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ABSTRACT 
The nonlocal continuum theories are capable to reflect the 

small length characteristic of nanostructures. In this work, 
variational principles are presented for the stability analysis of 
multi-walled carbon nanotubes under various mechanical 
loadings based on the nonlocal elastic Donnell's shell by the 
semi-inverse method. In this manner, a set of proper essential 
and natural boundary conditions for each layer of the multi-
walled nanotube is derived.  
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INTRODUCTION  
Since the discovery of carbon nanotubes (CNT) in 

1991 [1], great interests between researchers have been 
inspired to study the response of nanotubes in different 
physical and mechanical problems. There are several ways for 
the investigation of nanostructures' behavior which includes: I) 
experimental observations, II) molecular dynamics (MD) 
simulations, III) quantum-based methods, IV) density function 
based tight binding (DFTB) method and V) continuum-based 
methods.  

The nano-sized experimental setups are quite difficult 
and expensive. Also, quantum-based methods and atomistic 
models like MD or DFTB are relatively time-consuming and 
they are associated with high computational cost for large-sized 
systems. Meanwhile, continuum-based modeling is relatively 
faster and much less expensive. Specially, when nanostructure 
is considered as parts of an assembled nano-device, where the 
atomistic behaviors are not the object of the analysis, 
continuum-based modelings give much more satisfying results. 
For these reasons, modeling nanostructures such as CNTs, 
graphene sheets, fullerenes and hybrid nano-structures based 
on the continuum theories has attracted the growing interests of 

researchers during the past decade in this field of science and 
engineering. As an example, the stability analysis of nanotubes 
has been studied using classical beam and shell theories under 
various mechanical loading [2-5].  

At small sizes in nano meter range ( 910 m), the 
atomistic structure such as lattice spacing between individual 
atoms is important, so that small scale effects can not be 
ignored. Eringen initiated the idea of non-classic theories in 
which the small scale effects is added into the classical 
continuum constitutive equations for the study of structures 
with atomic scales [6-9]. The non-local continuum theory is 
one of these non-classic theories, which considers the small 
scale effects in its formulation, however in a macroscopic 
manner.  

In nanostructures, range of the internal characteristic 
length (e.g. lattice parameters and bond lengths) is relatively 
close to the range of external characteristic lengths (e.g. wave 
length and crack length). The small length scales of nano-
structures may call the reasonability of application of classical 
continuum theories, which neglect the small scale effects, into 
uncertainty. Hence, non-classic continuum theories such as the 
nonlocal elasticity theory have advantages to consider the small 
length scales. Peddieson et al. used the nonlocal elasticity in 
modeling of nanotubes for the first time in 2003 [10]. During 
recent years, much attention has been directed in modeling the 
nanostructures specially the multi-walled carbon nanotubes 
(MWCNT) by using the nonlocal continuum-based theories, in 
buckling (structural instability), vibration and wave 
propagation analyses [11-17].  

The differential equations governed for the stability 
MWCNT are somewhat complicated, such that approximate 
and numerical methods are usually used for obtaining the 
critical loads at the onset of instability. Also, deriving the 
associated boundary conditions directly from the governing 
PDEs are quite difficult. Hence, deriving the variational 
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functional seems to be very advantageous as a part of the 
solution procedures for the stability analysis in some numerical 
methods (e.g. Finite Element, Galerkin and Ritz methods). 
Moreover, the variational approach smoothes the derivation of 
the boundary conditions.  

Recently, Adali presented the variational principles for 
MWCNT resting on an elastic foundation undergoing buckling 
under axial loading based on the nonlocal Euler-Bernoulli 
beam theory [18]. Modeling MWCNT as a set of concentric 
shells instead of beams provides more accurate results and 
makes the stability analysis possible under various mechanical 
loadings (including external pressure and torsional moment). 
To this goal, in this paper the variational equations have been 
derived for the multi-walled carbon nanotubes embedded in an 
elastic foundation based on the Donnell's nonlocal elastic shell. 
The van der Waals interaction between the adjacent layers of 
MWCNT is modeled by an equivalent pressure distribution. 
The semi-inverse method proposed by He [19,20] has been 
used to derive the functional for the Donnell's nonlocal elastic 
coupled PDEs. Also, all essential and natural coupled boundary 
conditions are derived using the obtained variational functional.  

In this paper the Rayleigh s principle [21] is applied to 
obtain those functions which by minimizing them, one can 
obtain the critical axial load and critical torsional moment.  

NONLOCAL VARIATIONAL PRINCIPLES FOR MULTI-
WALLED CARBON NANOTUBES  

In the classical theories of elasticity, the stress tensor 

 

at the reference point x

 

of continua, is a function of the 
local point strain  tensor at x . Eringen proposed the idea that 
for taking into account the small scale effects, the constitutive 
equations should be modified and presented the nonlocal 
elasticity theory [6,7]. The nonlocal elasticity theory is based 
on the assumption that the stress tensor 

 

at the local point x

 

is a function of strain tensor 

 

at all points of a continuum , 
both local and nonlocal points. The constitutive equation in the 
nonlocal elasticity theory is displayed in the integral form as 
[6-10, 16]: 

( ) , : ( ) ( )dVx x x C x x , (1) 

where, the function ( , )x x is called the nonlocal 

modulus [9], x x

 

is the distance between the local point x

 

and nonlocal point x , C

 

denotes the forth order elasticity 
tensor, and 0e a l , with a

 

as the internal characteristic 

length (e.g. C-C bond length or granular size), l  as the external 
characteristic length (e.g. crack length or wave length) and 0e

 

as a material parameter determined for nanostructure to 
coincide their experimental and continuum models results [16].  
[16]. Eringen developed the differential form of constitutive 
equation of the nonlocal elasticity theory from the integral form 
Eq. (1) which is given as [9] 

2 21 :C , (2) 

stating that 
0e a

 
is called the small scale parameter [14,16]. 

Eq. (2) can be written in the component form as 
2 21 .ij ijkl klC , (3) 

It is noted that in the special cases with 0 0e a , i.e. when the 

internal characteristic length is negligible, the nonlocal 
elasticity constitutive equation (Eq. (3)) approaches the 
classical elasticity constitutive equation ij ijkl klC . 

Now, let us consider a multi-walled carbon nanotube composed 
of n concentric cylindrical nanotubes with length L

 

which is 
embedded in a Winkler elastic foundation. We consider each 
layer as a Donnell's shell. Also, we consider x , y

 

and z

 

as 

the longitudinal, circumferential and radial coordinates of the 
nanotube, respectively (see Fig. 1).  

  

Fig 1: The schematic view of multi walled carbon nanotube, and the 
configuration of the coordinate system. 

 

The differential equation governing the radial deformation 
of the i th layer of MWCNT in the axisymmetric conditions 
based on the nonlocal elastic Donnell's shell has been obtained 
in the literature as follows [14]  

4
8 2 2 4

2 4

2 2 4

( , )
( , ) (1 ) ( , )

(1 ) ( , ); 1

i
i i i

i

i

w x yEh
D w x y N w x y

R x

p x y i n

 

(4) 

where 23 12(1 )/D Eh

 

denotes the effective bending 

stiffness of the layer with E , 

 

and h

 

as the elastic modulus, 
the Poisson's ratio and the thickness of the nanotube, ( , )iw x y

 

is the displacement of the ith layer of MWCNT  in the radial 
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direction, 
ip

 
denotes the total pressure exerted on the ith layer 

of MWCNT. Also, iR

 
is the radius of the ith layer. The symbol 

2

 
in Eq. (4) denotes the Laplacian differential operator which 

is defined as 
2 2

2
2 2

1
;

iy Rx y

 
(5) 

where 

 
denotes the polar circumferential coordinate. The 

Differential operator iN  in Eq. (4) can be written as [14]  
2 2 2

2 2
2i xi xyi yiN N N N

x yx y

 

(6) 

where xiN , yiN

 

and xyiN

 

denote the resultant forces on the ith 

layer due to the axial, circumferential and shearing stresses 
( , , )xi yi xyi , respectively. It is noted that they are calculated 

in the mid-plane of the cylindrical shell. The resultant forces 
are written in terms of the stress components as 

, , .xi xi yi yi xyi xyiN h N h N h

 

(7) 
In continuum based models, the van der Waals (vdW) 
interactions exerted on the ith nanotube atoms form the jth 
nanotube atoms can be modeled as an equivalent pressure 
distribution ijp , which is given in the linear form as 

[4,14,16,18] 
( )ij ij i jp c w w

 

(8) 

where ijc

 

is the vdW interaction coefficient between the ith 

and jth layers. Since the vdW is a weak atomic interaction, one 
can neglect the effects of non-adjacent layers. So, we consider 
the effects of only adjacent layers interactions in determining 
the total pressure exerted on each nanotube. By this 
assumption, the total pressure on layers can be written as 

1 12 12 1 2( ),p p c w w

 

(9) 

( 1) ( 1)

( 1) 1 ( 1) 1( ) ( ); 2, , 1,

i i i i i

i i i i i i i i

p p p

c w w c w w i n

 

(10) 

( 1) ( 1) 1( )n n n W n n n n n W np p k w c w w k w

 

(11) 

where Wk

 

is the Winkler elastic foundation modulus, recalling 

that the outermost layer rests on a Winkler foundation. It is 
noted that in the formulation of this work, the innermost tube is 
subscripted by 1 and the outermost by n. By substituting the 
total pressure expressions (9)-(11) into the Donnell's nonlocal 
elastic shell equation (4), the equilibrium differential equations 
governing the stability of the MWCNT can be derived as [14] 

4
8 2 2 41

1 1 12 4
1

2 2 4
12 1 2

(1 )

(1 ) ( ) 0,

wEh
D w N w

R x

c w w

 

(12) 

4
8 2 2 4 2 2

2 4

4
( 1) 1 ( 1) 1

(1 ) (1 )

( ) ( ) 0; 2 1,

i
i i i

i

i i i i i i i i

wEh
D w N w

R x

c w w c w w i n

 

(13) 

4
8 2 2 4

2 4

2 2 4
( 1) 1

(1 )

(1 ) ( ) 0

n
n n n

n

n n n n W n

wEh
D w N w

R x

c w w k w

 

(14) 

One can rewrite equations (12)-(14) in the form of differential 

operators 
iL  as [18] 

2 2 4

1 1 2 1 1 12 1 2( , ) ( ) (1 ) ( ) 0,D w w L w c w w

 
(15) 

2 2 4
1 1

( 1) 1 ( 1) 1

( , , ) ( ) (1 )

( ) ( ) 0,

i i i i i i

i i i i i i i i

D w w w L w

c w w c w w

 
(16) 

2 2 4
1 ( 1) 1( , ) ( ) (1 ) ( ) 0n n n n n n n n nD w w L w c w w

 
(17) 

where iD

 

denotes the ith equation. Indeed iL

 

consists of the 

uncoupled part of iD  which is given by 
4

8 2 2 4
2 4

2 2 4

( ) (1 )

(1 ) ; 1, 2, ,

i i i
i

in W i

Eh
L w D N

R x

k w i n

 

(18) 

where in

 

is the Kronecker s delta with the following 

definition 
1

0in

i n

i n

 

(19) 

In order to obtain the variational functional of the stability 
equations of the MWCNT, one can assume a trial-functional V

 

based on the semi-inverse method proposed by He [19,20], 
which can be written as [18]: 

1 2 1 1 1 2 2 1 2 3

1 1 1

( , ,..., ,..., , ) ( , ) ( , , )

( , , ) ( , )
i n n

i i i i n n n

V w w w w w V w w V w w w

V w w w V w w

 

(20) 

where one can define ; (0 )iV i n  as 

1 1

1 1 2 1 1 1 1 1 2 1( , ) ( ) ( , ) ,V w w U w d F w w d

 

(21) 

1 1

1 1

( , , ) ( )

( , , ) ; 2 1,

i

i

i i i i i i i

i i i i i

V w w w U w d

F w w w d i n

 

(22) 

1 1( , ) ( ) ( , ) .
n n

n n n n n n n n n nV w w U w d F w w d

 

(23) 

Taking the variation of any iV  leads to 

1 1 1 1( , , ) ( ) ( , , ) ,
i i

i i i i i i i i i i i iV w w w U w d F w w w d

 

(24) 

where 

 

denotes the variational operator and iU

 

is such that 

its variation to be: 
( ) ( ) ; 1, 2, ,i i i i iU w L w w i n

 

(25) 

Also, in Eq. (22), 1 1( , , )i i i iF w w w

 

denote the unknown 

functions of iw

 

to be determined such that the differential 

equations (15)-(17) correspond to the Euler Lagrange 
equations of the trial-functional V

 

given in (20). Indeed, 
( )i iU w

 

stands for the uncoupled term which is related to 

( )i iL w , and iF

 

stands for the coupled term 

1 1( , , ) ( )i i i i iD w w w L w . In view of equations (18) and (25), 

one can obtain ( )i iU w  as 
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( 4) (3) ( 2) ( 2) (3) ( 4)

( 2) (3) (2) ( 2)

( 4) (3) ( 2) ( 2 ) (3)

(3) ( 2) ( 2 )

2 2 2 2 2

, , , , ,

2 2 2 2
2 , , , ,

2 2 2 2 2

, , , ,

2 2 2

, , ,

1
( ) 4 6 4

2

2

3 3

2

i i i x i x y i x y i xy i y

xii x i x i x y i xy
i

i x i x y i x y i xy

yi i y i xy i x y

U w D w w w w w

Eh
w N w w w

R

w w w w

N w w w

( 4) (3) ( 2) ( 2) (3)

( 2) ( 2)

(3) ( 2) ( 2) (3)

(3) ( 2) ( 2) (

2 2 2 2 2

, , , ,

2
2 2 2

,, ,

2 2 2 2 2

, , , ,

2 2 2
, , ,

2 2 2 2

, , , ,

3 3

2

3 3

2

3 3

i y i xy i x y i x y

xyi i xyi x i y

i x i x y i xy i y

in W n xx n xy n yy

n x n x y n xy n y

w w w w

N w w w
x y

w w w w

k w w w

w w w w 3)

2

 

(26)  

where comma in ( ) ( ), ki x y
w

 

denotes the partial differentiation, 

 

times with respect to x

 

and k

 

times with respect to y . By 

taking variation of the trial-functional V

 

with respect to the 
deflection function iw

 

for each nanotube should give the 

corresponding Euler-Lagrange equations (here, the governing 
differential equations (12)-(14)). So that, using the Eq. (25), it 
can written 

2

1 1 2 1
1 1

( , ) ( ) 0,j
i

j

F
D w w L w

w

 

(27) 

1

1 1
1

( , , ) ( ) 0; 2, , 1,
i

j
i i i i i

j i i

F
D w w w L w i n

w

 

(28) 

1
1

( , ) ( ) 0
n

j
n n n n n

j n n

F
D w w L w

w

 

(29) 

where, /j iF w  is defined as 

( ) ( )0 , ,

( )

k

K
j j

k
ki i x y

F F

w wx y

 

(30) 

where jF

 

are still unknown functions, which will be 

determined later. For obtaining /j iF w  appeared in Eqs. (27)-

(29), using Eq. (15)-(17) we arrive at 
2

2 2 4
12 1 2

1 1

(1 ) ( ) ,j

j

F
c w w

w

 

(31) 

1
2 2 4

1

( 1) 1 ( 1) 1

(1 )

( ) ( ) ; 2, , 1,

i
j

j i i

i i i i i i i i

F

w

c w w c w w i n

 

(32) 

2
2 2 4

( 1) 1
1

(1 ) ( ) .j
n n n n

j n

F
c w w

w

 

(33) 

The summations in Eqs. (31)-(33) can be expanded to give 

4 4 4
1 2

12 1 24 2 2 4
1 1

6 6 6 6
2

12 1 26 4 2 2 4 6

2 ( )

3 3 ( ),

F F
c w w

w w x x y y

c w w
x x y x y y

 
(34) 

1 1

4 4 4

( 1) 14 2 2 4

6 6 6 6
2

( 1) 16 4 2 2 4 6

4 4 4

( 1) 14 2 2 4

6 6 6
2

( 1) 6 4 2

2 ( )

3 3 ( )

2 ( )

3 3

i i i

i i i

i i i i

i i i i

i i i i

i i

F F F

w w w

c w w
x x y y

c w w
x x y x y y

c w w
x x y y

c
x x y x

6

12 4 6
( ),i iw w

y y

 

(35) 

4 4 4
1

( 1) 14 2 2 4

6 6 6 6
2

( 1) 16 4 2 2 4 6

2 ( )

3 3 ( )

n n
n n n n

n n

n n n n

F F
c w w

w w x x y y

c w w
x x y x y y

 

(36) 

According to the definition of /j iF w

 

in Eq. (30) and the 

obtained results in (34)-(36), one can derive the unknown 
functions iF  in the trial-functional V  as follows:  

(3) (3)

(3) (3) ( 2) (2 ) ( 2) ( 2)

22

1 1 2 12 1, 2, 1, 2,

22 2
1, 2, 12 1, 2,

2 2 2

1, 2, 1, 2, 1, 2,

1
( , )

4
1

2
4

3 3 ,

xx xx yy yy

xy xy x x

y y x y x y xy xy

F w w c w w w w

w w c w w

w w w w w w

 

(37) 

(3) (3) (3) (3)

( 2) ( 2) ( 2) ( 2)

2

1 1 ( 1) , 1,

2 2

, 1, , 1,

22
2

( 1) , 1, , 1,

2 2

, 1, , 1,

( 1) , 1,

1
( , , )

4

2

1

4

3 3

1

4

i i i i i i i xx i xx

i yy i yy i xy i xy

i i i x i x i y i y

i x y i x y i xy i xy

i i i xx i

F w w w c w w

w w w w

c w w w w

w w w w

c w w

(3) (3) (3) (3)

( 2) (2 ) ( 2) ( 2)

22

, 1,

2

, 1,

22
2

( 1) , 1, , 1,

2 2

, 1, , 1,

2

1

4

3 3 ,

xx i yy i yy

i xy i xy

i i i x i x i y i y

i x y i x y i xy i xy

w w

w w

c w w w w

w w w w

 

(38) 
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(3) (3) (3) (3)

( 2) ( 2 ) ( 2) ( 2 )

2

1 ( 1) , 1,

2 2

, 1, , 1,

22
2

( 1) , 1, , 1,

2 2

1, 2, , 1,

1
( , )

4

2

1

4

3 3

n n n n n n xx n xx

n yy n yy n xy n xy

n n n x n x n y n y

x y x y n xy n xy

F w w c w w

w w w w

c w w w w

w w w w

 
(39)  

Now with iU

 

and iF

 

in hands, the trial functional V

 

which is 

previously suggested in Eq. (20) can be fully determined. 

3. Stability analysis of MWCNT  

In this section, the method of determining the critical 
axial load and torsional moment for the onset of instability of 
the MWCNT is represented.  

3.1 Axial buckling  

In axial loading of multi-walled carbon nanotube, only 

the axial component x

 

of stress tensor is nonzero. Therefore, 

the corresponding resultant forces in the ith layer can be given 
as 

, 0, 0xi x yi xyiN h N N . (40)  

By applying the Rayleigh s principle [18,21], one can 

determine the critical axial stress cr
x  as 

1

1

( ) ( ) ( )

min
( )

i n

i

i

n

i i i i i n n
icr

x nw
Axial
i i i

i

G w F w d H w d

h J w d

 

(41)  

where ( )i iG w , ( )nH w  and ( )Axial
i iJ w  are defined as 

( 4) (3) (2 ) ( 2)

(3) ( 4) ( 2)

2 2 2

, , ,

2 2 2
2, , ,

( ) 4 6

4 ,

i i i x i x y i x y

i xy i y i x
i

G w D w w w

Eh
w w w

R

 

(42) 

(3) ( 2) ( 2) (3)

2 2 2
, , ,

2 2 2 2 2

, , , ,

( ) 2

3 3 ,

n W n xx n xy n yy

n x n x y n xy n y

H w k w w w

w w w w

 

(43) 

(3) ( 2) ( 2 )

( 4) (3) ( 2) ( 2) (3)

2 2 2

, , ,

2 2 2 2 2

, , , ,

( ) 2

3 3

Axial
i i i x i x y i xy

i x i x y i x y i xy

J w w w w

w w w w

 

(44) 

Thus, the axial buckling load Buckling
xP  can be calculated as 

1

2 .
n

Buckling Buckling
x x i

i

P h R

 

(45)  

3.2 Torsional buckling  

When the multi-walled carbon nanotube are subjected 
to the torsional moment xT , only the shearing component xy

 
of the stress tensor is nonzero. Therefore, the corresponding 
resultant forces in the ith layer (by assuming the equal shearing 
stress in all layers) can be given as 

2

1

0, 0, .
2

x
xi yi xyi xyi xy n

i
i

T
N N N h h

R

 

(46) 

Similar to the approach used for determining the axial buckling 
load, the critical shearing stress cr

xy

 

for the onset of instability 

of MWCNT can be determined by applying Rayleigh s 
principle [18,21] as 

1

1

( ) ( ) ( )

min
( )

i n

i

i

n

i i i i i n n
icr

xy nw
Torsional
i i i

i

F w G w d H w d

h J w d

 

(47) 

where ( )i iG w  and ( )nH w  was previously defined in Eqs. (42)-

(43), and ( )Torsional
i iJ w  is defined as 

( 2) (2)

(3) ( 2) (2) (3)

2
2 2 2

,, ,

2 2 2 2 2

, , , ,

( ) 2

3 3

Torsional
i i i xyi x i y

i x i x y i xy i y

J w w w w
x y

w w w w

 

(48) 

Hence, the torsional critical moment Bucling
xT  is given as 

1

2 .
n

Buckling Buckling
x xy i

i

T h R

 

(49) 

One can use the numerical methods such as Galerkin or Ritz 
method to minimize the function given in (41) and (47) to 
calculate the critical axial load and critical torsional moment. 

4. Boundary conditions 

Deriving the BCs for a complicated coupled system of 
differential equations such as given in Eqs. (12)-(14) seems 
quite difficult. This is why the He's semi-inverse method 
[19,20] has been used to obtain the functional V , then to 
obtain the essential and natural BCs more smoothly.  

According to the Donnell's nonlocal elastic equations 
given in (13) one can see that each equation is a PDE of degree 
8, then it's necessary to obtain 8n

 

BCs for the coupled PDEs 
given in (12)-(14). One can take variations of functional V

 

with respect to iw

 

to arrive at the Euler-Lagrange equations 

(here, Donnell s nonlocal equilibrium Eqs. (13)), and also the 
natural and essential BCs for the multi-walled carbon nanotube 
as [18] 
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1 1 1

1

1 2

1 1 2 1 1 1( , ) 0,

w w wV V V

D w w w d

 
(50) 

1 1

1 1( , , ) 0,

i i i i

i

w w i w i w i

i i i i i i i

V V V V

D w w w w d

 
(51) 

1

1( , ) 0

n n n

n
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where i

 

denotes the BCs applied or existed on boundary 

 and 
iw jV  is defined as 

( ) ( )

( ) ( )

( )

,
, ,

k
i

k

k
j

w j i x y
k i x y

V
V w

w

 

(53) 

Here, the 8 BCs on each layer of MWCNT are given for the 
case of axial loadings. The essential BCs can be derived 
uniquely, But no one can propose a general form of natural BCs 
applied or existed on the boundary of MWCNT. Here one of 
the more common and more probable BCs are given as 
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(5) ( 2) (3) ( 2) (3)
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It s seen form Eqs. (54)-(61) that the natural boundary 
conditions are coupled, independent of value of the small scale 
parameter . It is to be noted that by modeling the nanotube as 

an Euler-Bernoulli beam, the natural boundary conditions are 
uncoupled when 0  as stated by Adali [18]. 

5. Conclusion 

The small length scales of nano-structures may call the 
reasonability of application of classical continuum theories into 
ambiguity [14-16]. Hence, non-classic continuum theories such 
as the nonlocal elasticity theory have some merits to consider 
the small length scales [6-9], however in a macroscopic 
manner. In this paper, variational equations for multi-walled 
carbon nanotube based on Donnell s nonlocal elastic shell 
equilibrium equations [14] are derived. He's semi-inverse 
method [19,20] is applied to derive the variational functional. 
The formula for obtaining the buckling axial load and critical 
torsional is given by applying the Rayleigh s principle on the 
obtained functional V

 

[18,21] (see Eqs. (41), (45), (47) and 
(49)). A set of essential and coupled natural boundary 
conditions (54)-(61) on each layer is derived. The obtained 
variational results can be used in the implementation of 
approximate and numerical methods such as the finite-element 
method in the analysis of the stability of multi-walled 
nanotubes.  
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