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Abstract—Deep learning algorithms often require solving a
highly non-linear and nonconvex unconstrained optimization
problem. Generally, methods for solving the optimization prob-
lems in machine learning and in deep learning specifically are
restricted to the class of first-order algorithms, like stochastic gra-
dient descent (SGD). The major drawback of the SGD methods
is that they have the undesirable effect of not escaping saddle-
points. Furthermore, these methods require exhaustive trial-and-
error to fine-tune many learning parameters. Using the second-
order curvature information to find the search direction can help
with more robust convergence for the non-convex optimization
problem. However, computing the Hessian matrix for the large-
scale problems is not computationally practical. Alternatively,
quasi-Newton methods construct an approximate of Hessian ma-
trix to build a quadratic model of the objective function. Quasi-
Newton methods, like SGD, require only first-order gradient
information, but they can result in superlinear convergence,
which makes them attractive alternatives. The limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) approach is one of
the most popular quasi-Newton methods that construct positive-
definite Hessian approximations. Since the true Hessian matrix is
not necessarily positive definite, an extra initialization condition
is required to be introduced when constructing the L-BFGS
matrices to avoid false negative curvature information. In this
paper, we propose various choices for initialization methods of the
L-BFGS matrices within a trust-region framework. We provide
empirical results on the classification task of the MNIST digits
dataset to compare the performance of the trust-region algorithm
with different L-BFGS initialization methods.

Index Terms—Quasi-Newton Methods, L-BFGS, Trust-Region,
Initialization, Deep Learning

I. INTRODUCTION

Deep learning is becoming the leading technique for solving
the large-scale machine learning problems, including image
classification, natural language processing, and large-scale
regression tasks [1]. Deep learning algorithms attempt to train
a function approximation (model), usually a convolutional
neural network (CNN), over a large dataset. In most of deep
learning algorithms, solving an unconstrained optimization of
a highly nonlinear and non-convex objective function of the
form

min
w∈Rn

L(w) ,
1

N

N∑
i=1

`i(w) (1)
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is required [2], where w ∈ Rn is the vector of trainable
parameters of the CNN model, N is the size of dataset, and
`i(w) is the error of model’s prediction for the ith observation
of the training dataset.

A. Existing Methods

Finding an efficient optimization algorithm for the large-
scale, non-convex problem (1) has attracted many researchers
[1]. There are various algorithms proposed in machine learning
and optimization literature to solve (1), among those one can
name first-order methods such as stochastic gradient descent
(SGD) methods [3]–[6], and the quasi-Newton methods [7]–
[10], and also Hessian-free methods [11]–[14].

Since, in large-scale machine learning problems usually N
and n are very large numbers, the computation of the true
gradient ∇L(w) is expensive and the computation of the
true Hessian ∇2L(w) is not practical. Hence, most of the
optimization algorithms in machine learning and deep learning
literature are restricted to the variant of first-order gradient
descent methods such as SGD methods. SGD methods use a
small random sample of data (S) to compute an approximate of
the gradient of the objective function, ∇L(S)(w) ≈ ∇L(w).
At each iteration of the learning update, the parameters are
updated as wk+1 ← wk−ηk∇L(Sk)(wk), where ηk is referred
to as the learning rate.

The computational cost-per-iteration of SGD algorithm is
small, making them the most widely used optimization method
for vast majority of the deep learning applications. However,
these methods require fine-tuning of many hyperparameters,
including the learning rates. The learning rates are usually
chosen to be very small; therefore, the SGD algorithms
require revisiting many epochs of data during the learning
process. Indeed, it is unlikely that the SGD methods perform
successfully in the first trial, though there are recent works
that address tuning these hyperparameters automatically (see
e.g., [15], [16]).

Another major drawback of the SGD methods is that they
struggle with saddle-points that occur in most of the non-
convex optimization problem and has the undesirable effect
on the model’s generalization of learning. In the other hand,
using the second-order curvature information, can help with
more robust convergence for the non-convex optimization



problem. The second-order methods like Newton method use
the Hessian ∇2L(w) and the gradient to find the search
direction, pk = −∇2L(wk)−1∇L(wk) and then use line-
search method to find the step length along the search di-
rection. The main bottleneck in the second-order methods is
the serious computational challenges involved in computation
of the Hessian ∇2L(w) for large-scale , which is not practical
when n is large. The quasi-Newton methods and Hessian-free
methods are both using approaches to approximate the Hessian
matrix without computing and storing the true Hessian matrix
∇2L(w). Hessian-free methods attempts to find an approxi-
mate Newton direction by solving ∇2L(wk)pk = −∇L(wk)
without forming the Hessian using the conjugate-gradient
methods [11]–[14].

Quasi-Newton methods form an alternative class of first-
order methods for solving the large-scale non-convex opti-
mization problem in deep learning. These methods, like SGD,
require only computing the first-order gradient of the objective
function. By measuring and storing the difference between
consecutive gradients, quasi-Newton methods construct quasi-
Newton matrices {Bk} which are low-rank updates to the
previous Hessian approximations for estimating ∇2L(wk) at
each iteration. They build a quadratic model of the objective
function by using these quasi-Newton matrices and use that
model to find a sequence of search directions that can result in
superlinear convergence. Since these methods do not require
the second-order derivatives, they are more efficient than
Newton’s method for large-scale optimization problems [17].

There are various quasi-Newton methods proposed in lit-
erature. They differ in how they define and construct the
quasi-Newton matrices {Bk}, how the search directions are
computed, and how the parameters of the model are updated.
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [18]–
[21] is considered the most popular quasi-Newton algorithm,
which produces positive semidefinite matrix Bk for each
iteration. The conventional BFGS minimization employs line-
search, which first attempts to find the search directions by
computing pk = −B−1k ∇L(wk) and then decides on the step
size αk ∈ (0, 1] based on sufficient decrease and curvature
conditions [17] for each iteration k and then update the
parameters wk+1 = wk + αkpk. The line-search algorithm
first tries the unit step length αk = 1 and if it does not satisfy
recursively reduce αk. There are computational cost regard-
ing the satisfaction of the sufficient decrease and curvature
conditions and finding αk using line-search methods. Also if
the curvature condition does not satisfy for αk ∈ (0, 1], the
BFGS matrix may not stay positive definite and the update will
become unstable. On the other hand if the search direction
is rejected in order to preserve the positive definiteness of
L-BFGS matrices, the progress of learning might stop or
become very slow. Finally, solving Bkpk = −∇L(wk) can
become computationally expensive when Bk becomes a high-
rank update.

The Limited-memory BFGS (L-BFGS) method constructs a
sequence of low-rank updates to the Hessian approximation
and consequently solving pk = B−1k ∇L(wk) can be done

efficiently. Recently, an L-BFGS quasi-Newton method based
on trust-region methods have been implemented and employed
for the classification task in the deep learning framework
[22]. Trust-region methods attempt to find the search direction
in a region that they trust the accuracy of the quadratic
model of the objective function. These methods not only
have the benefit of being independent from the fine-tuning
of hyperaparameters related to SGD learning methods, but
they also improve upon the training performances and the
convergence robustness compared to the line-search methods.
Furthermore, trust-region L-BFGS methods can easily reject
the search directions if the curvature condition does not satisfy
to preserve the positive definiteness of the L-BFGS matrices.
Based on the distinguishing characteristics of trust-region
algorithms, unlike line-search methods, the progress of the
learning will not stop or slow down due to the occasional
rejection of the undesired search directions.

B. Motivation For This Research

In order to construct the quasi-Newton matrices at each
iteration k, it is required to start with an initial matrix B0

that is often set to some multiple B0 = γkI of the identity
[17]. Then once B0 is given, the L-BFGS matrices Bk can be
constructed using the L-BFGS compact representation formula
[7], [23]. The choice of the initial quasi-Newton matrix B0

is crucial because it has a direct impact on the quality of
the approximation of the Hessian [9], [24] and the quality
of the robustness of L-BFGS convergence. L-BFGS matrices
are attempting the hard task of approximating the indefinite
Hessian matrix with positive definite matrices, which might
result in false negative curvature information. This motivates
some researchers to prefer indefinite quasi-Newton matrices
such as Limited-memory Symmetric Rank One (L-SR1) update
over the L-BFGS. However, the L-SR1 methods, unlike L-
BFGS, do not guarantee a descent direction. We hypothesize
that by introducing an extra condition for safe-guarding γk, the
false negative curvature information can be avoided to some
degree when approximating the Hessian matrix in an L-BFGS
framework. We note that this work builds upon the results in
[9] for defining γk.

C. Our Objective

In this paper we discuss the choices for initializing L-
BFGS matrices to obtain parameter γk that result in better
training performance and generalization of learning, without
introducing significant computational cost. We define extra
conditions that requires solving a general eigenvalue problem
of form A∗z = λB∗z, where A∗ and B∗ are obtained from
the compact representation of the L-BFGS matrix. Conse-
quently, solving this general eigenvalue problem does not add
significant computational cost. We test our hypothesis on a
supervised learning problem, namely the classification task of
MNIST handwritten digits dataset, in the trust-region L-BFGS
framework.



D. Outline

In Section II, we review the L-BFGS trust-region opti-
mization method. First, we introduce the trust-region method
and its properties. Second, we introduce the compact rep-
resentation of the L-BFGS quasi-Newton matrices. Third,
we introduce an efficient high accuracy method for solving
the trust-region subproblem based on optimality conditions
in order to define the search direction. In Section III, we
examine three methods for initializing the L-BFGS matrices.
In Section IV, we describe our numerical experiments on the
classification task of the MNIST digits dataset, using the L-
BFGS trust-region optimization method with our proposed
initialization methods. In Section V, we present the results of
the numerical experimentation and compare the effect of the
different initialization methods on the training performance of
the L-BFGS trust-region algorithm. In Section VI, we provide
the concluding remarks.

II. METHODOLOGY

In this section, we give a summary of the trust-region
method to solve the unconstrained optimization problem (1),
where L(w) is a continuously differentiable function.

A. Trust-Region Methods

Trust-region methods generate a sequence of iterates
wk+1 = wk + pk, where each search step pk is obtained from
solving the following trust-region subproblem:

pk = arg min
p∈Rn

Qk(p) , gTk p+
1

2
pTBkp

T (2)

subject to ‖p‖2 ≤ δk

where gk , ∇L(wk) is the gradient of the objective function,
Bk is an approximation to the Hessian ∇2L(wk), and δk >
0 is the trust-region radius. The global solution to the trust-
region subproblem (2) can be characterized by the optimality
conditions given in the following theorem due to Gay [25] and
Moré and Sorensen [26]:

Theorem 1: Let δk be a positive constant. A vector p∗ is a
global solution of the trust-region subproblem (2) if and only
if ‖p∗‖2 ≤ δk and there exists a unique σ∗ ≥ 0 such that
B + σ∗I is positive semidefinite and

(B + σ∗I)p∗ = −g and σ∗(δ − ‖p∗‖2) = 0. (3)

Moreover, if B + σ∗I is positive definite, then the global
minimizer is unique.

The computational bottleneck of trust-region methods is the
solution of the trust-region subproblem (2). However, recent
work (see e.g., [27], [28]) has shown that (2) can be efficiently
solved if the Hessian approximation Bk is chosen to be a
quasi-Newton matrix, which we describe next. (For further
details on trust-region methods, see [29].)

B. Quasi-Newton Methods

For large-scale problems, computing the Hessian ∇2L(wk)
and using it as Bk in the quadratic model in (2) is not practical
because of the memory and computational requirements . In
contrast, quasi-Newton methods, like gradient descent meth-
ods, require only the computation of first-derivative informa-
tion. They can construct a model of objective function by mea-
suring the changes in the consecutive gradients for estimating
the Hessian that can produce a super-linear convergence rate.
The most well-known quasi-Newton method is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update, given by

Bk+1 = Bk −
1

sTkBksk
Bksks

T
kBk +

1

yTk sk
yky

T
k , (4)

where

sk = wk+1 − wk, and yk = ∇L(wk+1)−∇L(wk).

The matrix Bk+1 is guaranteed to be positive definite if Bk
is positive definite and the curvature condition sTk yk > 0 is
satisfied.

Using this update alone is not efficient for unconstrained
optimization problem since it requires solving Bkpk =
−∇L(wk) for each iteration to find the search step pk which
can be expensive when the rank of Bk is high.

C. Limited-Memory BFGS

For large-scale optimization problems, the limited-memory
BFGS (L-BFGS) is more efficient (see [30]). In practice, only
a limited collection of recent {(sj , yj)} pairs is stored in
memory, say m, where m � n (usually m < 100). The
recently computed pairs {(sj , yj)} are stored in matrices Sk
and Yk as

Sk , [sk−m . . . sk−1] and Yk , [yk−m . . . yk−1].

At each iteration, the L-BFGS matrix Bk is then computed
recursively using the BFGS rank-2 update rule in (4) with
some initial B0 = γkI . In Section III, we will propose methods
to find γk.

D. Compact Representation of L-BFGS matrices

Since the BFGS updates are low rank, the L-BFGS matrix
Bk can be represented in the compact form

Bk = B0 + ΨkMkΨT
k , (5)

where Ψk and Mk are defined as

Ψk =
[
B0Sk Yk

]
, Mk =

[
−STk B0Sk −Lk
−LTk Dk

]−1
, (6)

and Lk is strictly lower triangular part and Dk is the diagonal
part of the matrix STk Yk, i.e.,

STk Yk = Lk +Dk + Uk, (7)

where Uk is a strictly upper triangular matrix. (See [23] for
further details.)



E. Trust-Region Subproblem Solution

To efficiently solve the trust-region subproblem (2), we
exploit the compact representation of the L-BFGS matrix to
obtain a global solution based on optimality conditions (3).
In particular, we compute the spectral decomposition of Bk
using the compact representation of Bk. First, we obtain the
QR factorization of Ψk = QkRk, where Qk has orthonormal
columns and Rk is strictly upper triangular. Then we compute
the eigendecomposition of RkMkR

T
k = VkΛ̂kV

T
k , so that

Bk = B0 + ΨkMkΨT
k = γkI +QkVkΛ̂kV

T
k Q

T
k . (8)

Note that since Vk is an orthogonal matrix, the matrix QkVk
has orthonormal columns. Let P = [ QkVk (QkVk)⊥ ] ∈
Rn×n, where (QkVk)⊥ is a matrix whose columns form an
orthonormal basis for the orthogonal complement of the range
space of QkVk, thereby making P an orthonormal matrix.
Then

Bk = P

[
Λ̂ + γkI 0

0 γkI

]
PT . (9)

Using this eigendecomposition to change variables and diag-
onalize the first optimality condition in (3), a closed form
expression for the solution p∗k can be derived.

The general solution for trust-region subproblem using the
Sherman-Morrison-Woodbury formula is given by

p∗k = − 1

τ∗
[
I −Ψk(τ∗M−1k + ΨT

k Ψk)−1ΨT
k

]
gk, (10)

where τ∗ = γk + σ∗, and σ∗ is optimal Lagrange multiplier
in (3) (see [31] for details). The L-BFGS trust-region method
is described in Algorithm 1.

III. PROPOSED QUASI-NEWTON MATRIX INITIALIZATIONS

The most common choice for initializing quasi-Newton
methods is a scalar multiple of the identity matrix, i.e.,
B0 = γkI for γk > 0. In this section, we examine three
choices for the scalar parameter γk. In particular, we label
these choices as Method I, Method II, and Method III.

A. Initialization Method I

A conventional method to choose γk for L-BFGS is

γk =
yTk−1yk−1

sTk−1yk−1
. (11)

This choice is proposed for optimal conditioning, and it can
be viewed as a spectral estimate for Hessian ∇2L(wk). The
parameter γk is the minimizer of the optimization problem

γk = arg min
γ
‖B−10 yk−1 − sk−1‖22, (12)

where B−10 = γ−1I . We put a lower bound on γk =
max(ε, γk), where ε > 0, to avoid producing sequences of
nearly singular quasi-Newton matrices [32]. In our experi-
ments, we used ε = 1.0.

Algorithm 1 Limited-memory BFGS trust-region method.
Input: starting point w0, tolerance ε > 0, δ0, η < 1

4
Choose initialization Method I, Method II, or Method III

for k = 0, 1, 2, . . . do
Compute gk = ∇L(wk)
Compute γk to initialize B0 = γkI
γk ← max{γk, 1}
Compute Ψk and Mk from (6)
Form Bk orthonormal matrices in (9)
Compute search step pk by solving TR subproblem (2)
Compute sk = pk and yk = ∇L(wk + pk)−∇L(wk)
if sTk yk > 0 then

Store {sk, yk} in storage Sk+1 and Yk+1

Discard {sk−m, yk−m} from storage if k > m
end if
ρk ← (L(wk)− L(wk + pk))/(Qk(0)−Qk(pk))
if ρk > η then

wk+1 = wk + pk
else

wk+1 = wk
end if
Update trust-region radius δk+1

if ‖g‖2 < ε or k reached to maximum episodes then
break

end if
end for

B. Initialization Method II

The second method for finding γk for initialization of
B0 = γkI requires solving a general eigenvalue problem.
This method is inspired by [9] where γk is chosen in a
way that avoids the false curvature information for limited-
memory Symmetric Rank-1 (L-SR1) trust-region method. We
summarize the method described in [9] below.

Consider a quadratic objective function of the form L(w) =
1
2w

THw + gTw, where H ∈ Rn×n is symmetric and w, g ∈
Rn. The true Hessian ∇2L(w) is equal to matrix H . Note that
for this quadratic function, ∇L(wk+1)−∇L(wk) = Hwk+1+
g − (Hwk − g) = H(wk+1 − wk). Equivalently, yk = Hsk
for all k. Therefore, HSk = Yk and consequently, STk HSk =
STk Yk. Using the compact representation of Bk in (5) with
B0 = γkI for this quadratic function, we obtain

STk HSk − γkSTk Sk = STk ΨkMkΨT
k Sk. (13)

Note that if H is not positive definite, then STk ΨkMkΨT
k Sk

may not be positive definite either. Therefore, by choosing
γk > 0, negative curvature information of H can be cap-
tured by STk ΨkMkΨT

k Sk. If H is positive definite and γk
is chosen too big, then false negative curvature information
can be produced. To avoid this undesired outcome, we choose
γk ∈ (0, λmin) where λmin is the minimum eigenvalue of the
following generalized eigenvalue problem:

(Lk +Dk + LTk )z = λSTk Skz, (14)



TABLE I
SUMMARY OF THE PROPOSED L-BFGS INITIALIZATION METHODS

Initialization Source Formula

Method I
Solve the optimization problem (12):

γk = max
{
1,
yTk−1yk−1

sT
k−1

yk−1

}
γk = argminγ ‖B−1

0 yk−1 − sk−1‖22

Method II
Solve the generalized eigenvalue problem (14):

γk =

{
max{1, 0.9λmin} if λmin > 0,

Use Method I if λmin ≤ 0.(Lk +Dk + LTk )z = λSTk Skz

Method III
Solve the generalized eigenvalue problem (17):

γk =

{
max{1, 0.9λmin} if λmin > 0,

Use Method I if λmin ≤ 0.A∗z = B∗λz

where Lk and Dk are defined in Section II. If the smallest
eigenvalue in (14) is negative, i.e., λmin < 0, we choose γk
from Method I instead.

C. Initialization Method III

We note that in (13), the right-hand side also depends on γk
because the matrices Ψk amd Mk depend on γk (see (6)). Yet
the generalized eigenvalue value problem (14) for determining
bounds on γk does not take this into account. In Method III,
we attempt to derive the generalized eigenvalue problem with
considering the dependency of matrices Mk and Ψk on γk as
defined in (6).

First, we compute the inverse of Mk explicitly using the
following block partitioning:

Mk =

[
−γSTk Sk −Lk
−LTk Dk

]−1
=

[
Ã B̃

B̃T D̃

]
(15)

where Ã, B̃, and D̃ are computed as follows:

Ã = −(γSTk Sk + LkD
−1
k LTk )−1

B̃ = −(γSTk Sk + LkD
−1
k LTk )−1LkD

−1
k

D̃ = D−1k −D−1k LTk (γSTk Sk + LkD
−1
k LTk )LkD

−1
k .

By substituting Mk from (15) and Ψk = [γSk Yk] into (13),
we have

STk HSk = γSTk Sk + STk YkD̃Y
T
k Sk + γ2

(
STk SkÃS

T
k Sk

)
+ γ
(
STk SkB̃Y

T
k S

T
k + STk YkB̃

TSTk Sk
)
. (16)

The last two terms in (16) depend nonlinearly on γ. To
find a linear condition for safe-guarding γk, we compute
these nonlinear terms in (16) using the γ parameter from the
previous iteration, i.e. γk−1 (with initial value of γ0 = 1).
Then, to find an upper bound for γk, we solve the following
generalized eigenvalue problem:

A∗z = λB∗z, (17)

where A∗ and B∗ is defined as

A∗ = Lk+Dk+LTk − STk YkD̃Y Tk Sk− γ2k−1(STk SkÃS
T
k Sk),

B∗ = STk Sk + STk SkB̃Y
T
k S

T
k + STk YkB̃

TSTk Sk.

As in Method II, if λmin < 0 in (17), we choose γk from
Method I.

IV. NUMERICAL EXPERIMENTS

In this section, we test the trust-region L-BFGS optimization
algorithm on the image classification task of the MNIST
dataset with the three different initialization methods for B0

discussed in this paper. All simulations were performed on a
cluster with 4 NVIDIA Tesla K20m GPU, 256 GB memory,
and 20 virtual Intel 1.2 GHz processors.

A. Supervised Learning Application: Classification Task

All methods are implemented to train the LeNet-5 convolu-
tional neural network for the image classification task of the
MNIST dataset. The MNIST dataset consists of 70, 000 exam-
ples of handwritten image of digits 0 to 9, with N = 60, 000
image training set {(xi, yi)}, and 10, 000 used as the test set.
Each image xi is 28×28 pixel, and each pixel value is between
0 and 255. Each image xi in training set include a label
yi ∈ {0, . . . , 9} describing its class. The objective function for
the classification task in (1) uses the cross entropy between
model prediction and true labels given by

`i(w) = −
J∑
j=1

yij log(pi),

where the pi(xi;w) = pi(y = yi|xi;w) is the probability
distribution of the model, i.e., the likelihood that the image is
correctly classified, J is the number of classes (J = 10 for
MNIST digits dataset) and yij = 1 if j = yi and yij = 0 if
j 6= yi (see [2] for details).

B. Convolutional Neural Network Architecture

We use the convolutional neural network architecture,
LeNet-5 for computing the likelihood pi(yi|xi;wi). The
LeNet-5 CNN is mainly used in literature for character and
digit recognition tasks [33]. This architecture is given in Table
II. The input to the network is 28× 28 image and the output
is 10 neurons followed by a softmax function attempts to
approximate the likelihood probability distribution p(yi|xi;w).
There are total of n = 431, 080 trainable parameters (weights)
in LeNet-5 CCN.

C. Computing Gradients

Computing the gradient ∇L(w) can be expensive when the
size of data is large. In addition, some of the data points are



TABLE II
LENET-5 CNN ARCHITECTURE [33].

Layer Connections
0: input 28× 28 image
1 convolutional, 20 5× 5 filters (stride = 1), followed by ReLU
2 max pooling, 2× 2 window (stride = 2)
3 convolutional, 50 5× 5 filters (stride = 1), followed by ReLU
4 max pool, 2× 2 window (stride = 2)
5 fully connected, 500 neurons (no dropout)

followed by ReLU
6: output fully connected, 10 neurons followed by softmax (no dropout)

similar, and consequently, usually a smaller random sample S
can be used to estimate the loss and the gradients

L(W ) ≈ L(S)(w) =
1

|S|
∑
i∈S

`i(w),

∇L(w) ≈ ∇L(S)(w) =
1

|S|
∑
i∈S
∇`i(w)

where, S is a random subset of indices from {1, 2, . . . , N}.
D. Multi-batch Sampling

The quality of the gradients directly impacts the quality
of the search step and also in approximating the Hessian
matrix. We perform our experiments using different data-to-
sample ratio N/|S| ∈ {1, 2.5, 5, 12.5, 25, 50, 100, 250,
500, 1000}. In particular, the smaller N/|S| becomes, the
larger batch size |S| becomes. In all simulations, we use the
sample that have overlap between consecutive samples Sk and
Sk+1. For iteration k, we use Sk to compute the gradient
gk = ∇L(Sk)(wk).

E. Computing yk
Inspired by [34], we use the overlap between the consecutive

multi-batch samples Ok = Sk ∩ Sk+1 to compute yk as

yk = ∇L(Ok)(wk+1)−∇L(Ok)(wk). (18)

The use of overlap to compute yk has been shown to result
in more robust convergence in L-BFGS since L-BFGS uses
gradient differences to update the Hessian approximations (see
[9], [34]).

F. Other parameters

We performed the experiments for two choices of the
quasi-Newton memory storage m ∈ {10, 20}. All simula-
tions stopped after 300 iterations or if the gradient satisfied
‖gk‖2 < ε = 10−5.

V. RESULTS AND DISCUSSIONS

The results of the training the trust-region L-BFGS algo-
rithm with different initialization (Method I, Method II, and
Method III), different multi-batch samples (1 ≤ N/|S| ≤
1000) and also different memory size m are depicted in Fig.
1. For each simulation, the training and test losses, the training
and test accuracy, and the total time of simulation were stored.
The minimum losses for both training and test sets for m = 10

are plotted in Fig. 1(a), for different sample sizes. Note that
N/|S| increases from left to right, meaning that the multi-
batch sample size is becoming smaller. For larger sample sizes
(e.g., for smaller values of N/|S|), the initialization Method I,
which is commonly used in the literature, performs the best.
However, as the mini-batch sample size decreases (e.g., for
N/|S| > 100), Methods II and III outperforms Method I.
For instance, the minimum training loss for Method II for
N/|S| = 500 is ∼ 287% lower than the one for Method I,
and the test loss for the same simulation is ∼ 120% lower.
For N/|S| = 1000, the training loss is ∼ 286% lower and the
test loss is ∼ 79% lower. The training loss for Method III is
∼ 131% lower than the one for Method I for N/|S| = 500,
and it is ∼ 450% lower for N/|S| = 1000. The test loss is 58%
lower for N/|S| = 500 and ∼ 100% lower for N/|S| = 1000.

Similar phenomena can be observed for the training and test
loss for m = 20, which is plotted in Fig. 1(b). The minimum
training loss for simulations with initialization Method II is
∼ 846% lower for N/|S| = 500, and test loss is ∼ 178%
lower. The training loss with Method III is ∼ 279% lower
than Method I for N/|S| = 250 and the test loss is ∼ 98%
lower. The training loss with Method III is ∼ 426% lower for
N/|S| = 500 and the test loss is ∼ 125% lower.

The training and test maximum accuracy for m = 10
is reported in Fig. 1(c), and we see similar improvements
using Methods II and III for simulations with smaller multi-
batch sample sizes (N/|S| ≥ 100). Our proposed initialization
methods results improves the test accuracy of prediction form
94.3% using Method I to 97.4% using Method II and to
96.3% using Method III, when N/|S| = 500. We saw similar
behavior in the maximum train and test accuracy for m = 20
which is plotted in Fig. 1(d). The maximum test accuracy
improved from 93% using Method I to 97.5% when we used
our proposed Method II and we saw improvement to 96.8%
when we used the proposed initialization Method III.

The total training time for m = 10 is reported in Fig. 1(e).
There is only ∼ 1% average increase in training time for
simulations using Method II, and ∼ 10% average increase in
training time for simulations using Method III, in comparison
to Method I. Similarly, for the training run time for simulations
with larger storage memory m = 20 in Fig. 1(f), there is no
significant difference between Method II and Method I, but
Method III was about 10% slower than the Method I.

VI. CONCLUSIONS

In this paper, we investigated three methods for initializing
L-BFGS matrices in a trust-region optimization framework.
The L-BFGS quasi-Newton matrix attempts to approximate the
curvature informations of the Hessian matrix ∇2L(wk) with a
positive definite quasi-Newton matrix Bk. In each iteration k,
an initial matrix B0 is required, and the usual choice for B0

is a non-negative scalar multiple of the identity matrix, i.e.,
B0 = γkI with γk > 0. The Hessian matrix ∇2L(wk) can be
indefinite if L(w) is nonconvex, and a careless initialization
of the quasi-Newton matrix can have the undesired effect
of definiteness mismatch between the true Hessian and the
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Fig. 1. A trust-region algorithm with different L-BFGS initialization methods is used for training LeNet-5 CNN to learn the task of classification of the
MNIST digits set. The performance of learning is depicted for different sample batch sizes S and different memory storage m = 10 and m = 20. N is the
size of data and |S| is the size of the sample batch. (a) Train and test minimum loss for m = 10. Note that as the batch size becomes smaller, i.e. N/|S|
becomes larger, Methods II and III outperform Method I. (b) Train and test minimum loss for m = 20. Similar phenomena occur for most of the smaller
batch sizes. (c) Train and test maximum accuracy for m = 10. As the batch sizes get smaller, the test accuracy for Method II and III are better than that for
Method I. (d) Train and test maximum accuracy for m = 20. The test accuracy for Method II and III are better than that for Method I. (e) Training time for
m = 10. As the batch sizes gets smaller, the training time is also decreases. (f) Training time for m = 20. There is no significant difference training time
of Method I and Method II. Method III is about %10 slower.



quasi-Newton Hessian approximation. We investigated three
methods for the initial matrix B0 = γkI (see Table I for a
summary of the initialization methods). We also experimented
on the effects of initialization on the performance of the
training using the LeNet-5 CNN on the classification task of
the MNIST handwritten digits dataset.

The initialization Method I given in (11), which is conven-
tionally used in literature [17], [32], is simple to compute and
usually is a great choice when the sample size is considerably
large, i.e. (|S|/N ≥ 1% or N/|S| ≤ 100). However, once the
sample sizes gets smaller, i.e. (|S|/N < 1% or N/|S| > 100),
the performance of the training drops dramatically.

Our proposed initialization Method II (based on [9]) intro-
duces a new condition on safeguarding γk by finding an upper
bound which requires solving a low-rank general eigenvalue
problem which does not add significant computational cost.
For smaller sample sizes (|S|/N < 1% or N/|S| > 100),
this initialization method outperformed the Method I in all
training and testing minimum loss and maximum accuracy
performances. However this method does not consider the fact
that Ψk and Mk is a function of γk when constructing the
general eigenvalue problem in (14).

Our proposed initialization Method III introduces a more
sophisticated condition on safeguarding γk. The key difference
between this method and Method II is that this method takes
into account that Ψk and Mk are functions of γk when defining
the generalized eigenvalue problem in (17). The computation
of A∗ and B∗ adds about 10% to the computational cost.
For smaller sample sizes i.e. (|S|/N < 1% or N/|S| > 100)
this initialization method also outperformed the initialization
Method I in all training and testing minimum loss and
maximum accuracy performances. There was no significant
difference between the performance of the training when using
initialization Methods II and III.
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