
Lateral Inhibition Overcomes Limits of Temporal Difference Learning
Jacob Rafati & David C. Noelle

(jrafatiheravi@ucmerced.edu, dnoelle@ucmerced.edu)
Computational Cognitive Neuroscience Laboratory

University of California, Merced
5200 North Lake Road

Merced, CA 95343 USA

Abstract

There is growing support for Temporal Difference (TD) Learn-
ing as a formal account of the role of the midbrain dopamine
system and the basal ganglia in learning from reinforcement.
This account is challenged, however, by the fact that realistic
implementations of TD Learning have been shown to fail on
some fairly simple learning tasks — tasks well within the ca-
pabilities of humans and non-human animals. We hypothesize
that such failures do not arise from natural learning systems
because of the ubiquitous appearance of lateral inhibition in
the cortex, producing sparse conjunctive internal representa-
tions that support the learning of predictions of future reward.
We provide support for this conjecture through computational
simulations that compare TD Learning systems with and with-
out lateral inhibition, demonstrating the benefits of sparse con-
junctive codes for reinforcement learning.
Keywords: reinforcement learning; lateral inhibition; sparse
conjunctive codes; computational cognitive neuroscience

Introduction
Humans and non-human animals are capable of learning
highly complex skills by reinforcing appropriate behaviors
with reward. The midbrain dopamine system has long been
implicated in reward-based learning (Schultz, Apicella, &
Ljungberg, 1993), and the information processing role of
dopamine in learning has been well described by a class
of reinforcement learning algorithms called Temporal Differ-
ence (TD) Learning (Montague, Dayan, & Sejnowski, 1996;
Schultz, Dayan, & Montague, 1997). While TD Learning, by
itself, certainly does not explain all observed reinforcement
learning phenomena, increasing evidence suggests that it is
key to the brain’s adaptive nature (Dayan & Niv, 2008).

Beyond empirical support for the TD Learning account of
biological reinforcement learning, the power of this learn-
ing method suggests that it may be capable of explaining the
neural basis of the successful learning of even fairly com-
plex tasks (Sutton & Barto, 1998). This algorithm can learn
elaborate decision making skills, such as playing the game
of Backgammon at the Grand Master level (Tesauro, 1995).
There are even proofs that TD Learning will converge to op-
timal performance, given enough experience (Dayan, 1992).

Despite these strengths, a mystery remains. There are some
relatively simple reinforcement learning problems for which
TD Learning has been shown to fail (Boyan & Moore, 1995).
These problems arise when the space of possible sensory
states of the learning agent is so large that it is intractable
to store the agent’s learned assessment of the value or qual-
ity of each state (i.e., its expectation of future reward, given
that it is in that state) in a large look-up table. In these cases,

it is necessary to encode the agent’s learned value function,
mapping from sensory state features to an expectation of fu-
ture reward, using some form of function approximator. For-
mally, this function approximator is a parameterized equa-
tion that maps from state to value, where the parameters can
be constructively optimized based on the experiences of the
agent. One common function approximator is an artificial
neural network, with the parameters being the connection
weights in the network. Such a network, adapted using the
backpropagation of error learning method (Rumelhart, Hin-
ton, & Williams, 1986), was used in the previously mentioned
Backgammon playing program (Tesauro, 1995). As illus-
trated by this program, TD Learning with an artificial neural
network approximating the value function, can solve appar-
ently complex tasks. Using a function approximator to learn
the value function has the added benefit of potentially sup-
porting generalization by including a bias toward mapping
similar sensory states to similar predictions of future reward.

Surprisingly, some tasks that superficially appear very sim-
ple cannot be perfectly mastered using this method. For ex-
ample, learning to navigate to a goal location in a simple
two-dimensional space in which there are obstacles has been
shown to pose a substantial challenge to TD Learning using
a backpropagation neural network (Boyan & Moore, 1995).
Note that the proofs of convergence to optimal performance
depend on the agent maintaining a potentially highly discon-
tinuous value function in the form of a large look-up table, so
the use of a function approximator for the value function vio-
lates the assumptions of those formal analyses. Still, it seems
unusual that this approach to learning can succeed at some
difficult tasks but fail at some fairly easy tasks.

The power of TD Learning to explain biological reinforce-
ment learning is greatly reduced by this observation. If TD
Learning fails at simple tasks that are well within the reach
of humans and non-human animals, then it cannot be used to
explain how the dopamine system supports such learning.

In this paper, we demonstrate how incorporating a ubiqui-
tous feature of biological neural networks into the artificial
neural networks used to approximate the value function can
allow TD Learning to succeed at simple tasks that have pre-
viously challenged it. Specifically, we show that the incorpo-
ration of lateral inhibition, producing competition between
neurons so as to produce sparse conjunctive representations,
can produce success in learning to approximate the value
function using an artificial neural network, where only fail-
ure had been previously found. Thus, through computational

1931



simulation, we provide preliminary evidence that lateral in-
hibition in the brain may help compensate for a weakness of
TD Learning, further buttressing the TD Learning account of
dopamine-based reinforcement learning.

In the remainder of this paper, we initially provide some
background concerning the reported failure of TD Learning
on fairly simple problems. We then provide details concern-
ing our computational simulations of TD Learning with lat-
eral inhibition included. The results of these simulations,
comparing the performance of our approach to previously ex-
amined methods, are then described. We close with a discus-
sion of these results and ideas for future work.

Background
Consider a very simple two-dimensional “grid world” envi-
ronment that remains static over time. A reinforcement learn-
ing agent in this environment may be faced with the choice, at
each time step, to move a fixed distance either North, South,
East, or West. On each time step, the agent receives mild
negative reinforcement, until it moves to a goal location in
the Northeast corner of the space, at which point the agent
is relieved of negative reinforcement. Further, imagine that
this environment contains “puddles” through which the agent
can move, but moving into puddle locations produces ex-
tremely strong negative reinforcement. Finally, consider the
case in which the agent can perfectly sense its location in the
grid environment (i.e., its Cartesian coordinates), but it oth-
erwise has no senses. This situation is illustrated in Figure 1.
Equipped with TD Learning, using a function approximator
to learn the value function, could such an agent learn to avoid
the puddles and move rapidly to the goal location, after sub-
stantial experience in the environment?

x
0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1
Puddle world task

Figure 1: The agent receives −1 reward on each time step
until it reaches the goal in the Northeast corner. The agent
moves a distance of 0.05 either North, South, East, or West
on each time step. Entering a puddle produces a reward of
(−400 × d), where d is the shortest distance to a puddle edge.

Boyan and Moore (1995) provided simulation evidence
suggesting that such learning is impossible. They tried a va-

riety of different value function approximators, including a
backpropagation network with a single hidden layer, but none
of them converged on a good solution to the problem. Indeed,
as the agent continued to explore the environment, the esti-
mate of future reward for locations kept changing, failing to
settle down to a fixed value function.

This observation suggests that the difficulty in learning this
problem arises from a specific feature of reinforcement learn-
ing. In particular, the value function that the function ap-
proximator is trying to learn is, in a way, a moving target.
Early in training, when the agent is unlikely to make it to
the goal location, the expected future reward for a given lo-
cation might be quite low. Later, if the agent has had some
successes, the value for the same location might be higher.
If the value function is stored in a large look-up table, then
adjusting the value of one location has no influence on the
values associated with other locations, allowing for small in-
cremental changes in the value function. When using a func-
tion approximator, however, adjusting parameters (e.g., back-
propagation network connection weights) for one location
will likely change the value assigned to many other locations,
potentially causing the un-learning of appropriate values for
those other locations. This is a reasonable hypothesis for the
observed lack of convergence.

In the following year, Sutton (1996) showed that this task
could be learned by a TD Learning agent by hard-wiring the
hidden layer units of the backpropagation network used to
learn the value function to implement a fixed sparse conjunc-
tive (coarse) code of the agent’s location. The specific encod-
ing used was one that had been previously proposed in the
CMAC model of the cerebellum (Albus, 1975). Each hid-
den unit would become active only when the agent was in a
location within a particular range of x values and within a
particular range of y values. The conjoining of conditions on
both coordinates is what made this code “conjunctive” in na-
ture. Also, for any given location, only a small fraction of
the hidden units displayed non-zero activity. This is what it
means for the hidden representation to be a “sparse” code.
Locations that were close to each other in the environment
produced more overlap in the hidden units that were active
than locations that were separated by a large distance. By en-
suring that most hidden units had zero activity when connec-
tion weights were changed, this approach kept changes to the
value function in one location from having a broad impact on
the expected future reward at distant locations. (In the back-
propagation of error learning algorithm, a connection weight
is changed in proportion to the activity on the sending side of
that connection, so there is no change if there is no activity
being sent.) By engineering the hidden layer representation,
this reinforcement learning problem was solved.

This is not a general solution, however. If the same ap-
proach was taken for another reinforcement learning problem,
it is quite possible that the CMAC representation would not
be appropriate. Thus, the method proposed by Sutton (1996)
does not help us understand how TD Learning might flexi-

1932



bly learn a variety of reinforcement learning tasks. This ap-
proach requires prior knowledge of the kinds of internal rep-
resentations of sensory state that are easily associated with
expected future reward, and there are simple learning prob-
lems for which such prior knowledge is unavailable.

We hypothesize that the key feature of the Sutton (1996)
approach is that it produces a sparse conjunctive code of the
sensory state. Representations of this kind need not be fixed,
however, but might be learned at the hidden layers of neu-
ral networks. Computational cognitive neuroscience models
have shown that a combination of feedforward and feedback
inhibition naturally produces sparse conjunctive codes over
a collection of excitatory neurons (O’Reilly & Munakata,
2001). Such patterns of lateral inhibition are ubiquitous in the
mammalian cortex (Kandel, Schwartz, Jessell, Siegelbaum,
& Hudspeth, 2012). Importantly, networks containing such
lateral inhibition can still learn to represent input information
in different ways for different tasks (O’Reilly & Munakata,
2001), retaining flexibility while producing the kind of sparse
conjunctive codes that may support reinforcement learning.

Simulation Methods
In order to assess our hypothesis that biasing a neural network
toward learning sparse conjunctive codes for sensory state in-
puts will improve TD Learning when using a value function
approximator, we constructed a variant of a backpropagation
network with a single hidden layer in which the number of
hidden units that could be highly active at any one time was
restricted. Like some computational cognitive neuroscience
models of lateral inhibition (O’Reilly & Munakata, 2001),
we implemented this through a k-Winners-Take-All (kWTA)
mechanism akin to pooled lateral inhibition. After calculat-
ing the net input values of hidden units based on the network
inputs (i.e., the weighted sum of the inputs), we identified a
single scalar amount of inhibition (i.e., negatively weighted
input) that, when added to all of the hidden unit net input val-
ues, would result in the k hidden units with the highest net in-
put values to have adjusted net input values that were positive,
while all hidden units with lower net input values would be
adjusted to become negative. These adjusted net input values
were transformed into unit activation values using a logistic
sigmoid activation function (gain of 1, offset of −1), resulting
in hidden unit activation values in the range between 0.0 and
1.0, with the top k units having activations above 0.27 (due
to the −1 offset) and the “losing” hidden units having activa-
tions below that value. The k parameter controlled the degree
of sparseness of the hidden layer activation patterns, with low
values producing more sparsity (i.e., fewer hidden units with
high activations). In the simulations reported here, we set k
to be 10% of the total number of hidden units.

In addition to encouraging sparse representations, this
kWTA mechanism has two properties that are worthy of note.
First, introducing this mechanism violates some of the as-
sumptions needed to formally relate the backpropagation of
error procedure to gradient descent in error. Thus, the con-

nection weight changes recommended by the backpropaga-
tion procedure may slightly deviate from those which would
lead to local error minimization in this network. We opted to
ignore this discrepancy, however, trusting that a sufficiently
small learning rate would keep these deviations small. Sec-
ond, it is worth noting that this particular kWTA mechanism
allows for a distributed pattern of activity over the hidden
units. This provides the learning algorithm with some flex-
ibility, allowing for a graded range of activation levels when
doing so reduces network error. As connection weights from
the inputs to the hidden units grow in magnitude, however,
this mechanism will drive the activation of the top k hidden
units closer to 1 and the others closer to 0. Indeed, an exam-
ination of the hidden layer activation patterns in the kWTA-
equipped networks used in this study revealed that the k win-
ning units consistently had activity levels close to the maxi-
mum possible value, once the learning process was complete.

Our reinforcement learning agent used this neural network,
with kWTA, as an adaptive value function approximator. We
used a version of TD Learning called SARSA (Sutton &
Barto, 1998), which calculates a separate prediction of ex-
pected future reward for each action that might be taken from
the current state. Thus, the value function can be formalized
as Q(s,a), where s is the current sensory state (i.e., the loca-
tion of the agent expressed as an < x , y > coordinate pair), and
a is a considered next action (i.e., one of North, South, East,
and West). The value of Q(s,a) is then the expected future
reward at state s when a will be the next action, and future ac-
tions will be those, at each future state, that maximize the ex-
pected future reward at that state (i.e., argmaxa Q(s,a)). The
expected future reward value is discounted, so that rewards
that are received soon are weighted more heavily than rewards
that are received in the distant future. The amount of dis-
counting is controlled by a discounting parameter, γ ∈ (0,1],
such that the expected future reward at time t is:

m∑
k=0

γk r(t + k)

Here, r(t) is the instantaneous reward received at time t (see
below for specific values), and m is either the number of time
steps remaining until the goal is reached or, if the goal is not
reached, a time step maximum (such that t +m = 80; about
twice the time needed to get from any point in the environ-
ment to any other). For these simulations, temporally dis-
tal rewards were fairly highly weighted by using a value of
γ = 0.99. The backpropagation network was expected to learn
an approximation of the Q(s,a) function, Q̂(s,a), where the
state, s, is provided as input to the network, and there is one
output for each action, a, specifying Q̂(s,a) for the pair.

For the puddle world task, the x-coordinate and the y-
coordinate of the current state, s, were presented to the neural
network over two separate pools of input units. Note that
these coordinate values were in the range [0,1], as shown in
Figure 1. Each pool of input units consisted of 21 units, with
each unit corresponding to a coordinate location between 0

1933



and 1, inclusive, in increments of 0.05. To encode a coor-
dinate value for input to the network, a Gaussian distribu-
tion with a peak value of 1, a standard deviation of 0.05, and
a mean equal to the given continuous coordinate value was
used to calculate the activity of each of the 21 input units.
For example, for a coordinate value of 0.15, the input unit
corresponding to this value was set to a maximum activation
of 1 and input units corresponding to coordinate values above
and below 0.15 were set to activity levels that decreased with
distance from 0.15 according to the Gaussian function.

The network had four output units, each corresponding to
one of the four directions of motion. Between the 42 in-
put units and the 4 output units was a layer of 220 hidden
units. The hidden layer was subject to the previously de-
scribed kWTA mechanism, parameterized so as to allow 10%,
or 22, of the hidden units to be highly active. The hidden units
used a logistic sigmoid activation function on net input values
that were adjusted to allow only 22 units to be highly active
at any one time. The output units used a linear activation
function (i.e., their activation was equal to their net input).
There was complete connectivity between the input units and
the hidden units and between the hidden units and the out-
put units, with all connection weights initialized to uniformly
sampled random values in the range [−0.05,0.05].

Following the SARSA version of TD Learning, the rein-
forcement agent was controlled in the following way. The
current location of the agent, s, was provided as input to the
neural network, producing four output activation values. With
a small exploration probability, ε , these values were ignored,
and an action was selected uniformly at random from the four
cardinal directions. (The value of ε is discussed further, be-
low.) Otherwise, the output unit with the highest activation
level determined the action, a, to be taken. The agent then
moved a distance of 0.05 in the direction specified by the se-
lected action, placing it in a new state, s′.

At this point, the agent received a reward signal, r , based
on its current location, s′. This value was −1 for most of the
environment, but it had a higher value, 0, at the goal location
in the Northeast corner. If the agent was currently located
in a puddle, the reward signal was calculated as (−400 × d),
where d is the shortest distance from the current location to
the edge of the puddle. Finally, the agent received a reward
signal of −2 if it had just attempted to leave the square envi-
ronment. Thus, the agent was “punished” for being anywhere
except the goal location, and it was severely “punished” for
entering a puddle. This pattern of reinforcement was selected
to parallel that used in Sutton (1996).

The action selection process was then repeated at location
s′, determining a subsequent action, a′. Before this action
was taken, however, the neural network value function ap-
proximator had its connection weights updated according to
the SARSA Temporal Difference (TD) Error:

δ =
(
r + γ Q̂(s′ ,a′)

)
− Q̂(s,a)

The TD Error, δ, was used to construct an error signal for the

backpropagation network implementing the value function.
The network was given the input corresponding to s, and ac-
tivation was propagated through the network. Each output
unit then received an error value. This error was set to zero
for all output units except for the unit corresponding to the
action that was taken, a. The selected action unit received an
error signal equal to the TD Error, δ. These error values were
then backpropagated through the network, using the standard
backpropagation of error algorithm (Rumelhart et al., 1986),
and connection weights were updated (with a low learning
rate, α, of 0.005). This process was then begun again, start-
ing at location s′ and taking action a′.

The agent explored the puddle world environment in
episodes. Each episode began with the agent being placed
at a location within the environment sampled uniformly at
random. Actions were then taken, and connection weights
updated, as described above. The episode ended when the
agent reached the goal location or after the maximum of 80
actions had been taken. At the beginning of a simulation, the
exploration probability, ε , was set to a relatively high value
of 0.1, and it remained at this value for much of the learning
process. Once the average magnitude of δ over an episode
fell below 0.2, the value of ε was reduced by 0.1% each time
the goal location was reached. Thus, as the agent became
increasingly successful at reaching the goal location, the ex-
ploration probability, ε , approached zero. (Annealing the ex-
ploration probability is commonly done in systems using TD
Learning.) The agent continued to explore the environment,
one episode after another, until the average absolute value
of δ was below 0.01 and the goal location was consistently
reached, or a maximum of 44,100 episodes had been com-
pleted. (This value was heuristically selected as a function of
the size of the environment: (21 × 21) × 100 = 44,100.)

When this reinforcement learning process was complete,
we examined both the behavior of the agent and the degree
to which its value function approximations, Q̂(s,a), matched
the correct values, Q(s,a), where the correct values were de-
termined by running SARSA to convergence while using a
large look-up table to capture the value function.

Simulation Results
We compared the performance of our kWTA neural network
with that produced by using a standard backpropagation net-
work with identical parameters. We also examined the per-
formance of a “linear” network, which had no hidden units
but only complete connections from all input units directly to
the four output units. Twenty simulations were conducted for
each of these three neural network architectures.

Figure 3 shows the value function (plotted as maxa Q̂(s,a)
for each location, s) for representative networks of each kind.
Also displayed are selected actions at a grid of locations. Fi-
nally, we show learning curves displaying the episode average
value of the TD Error, δ, over episodes.

In general, the linear network did not consistently learn to
solve this problem, sometimes failing to reach the goal or

1934



choosing paths through puddles. The backpropagation net-
work performed much better, but its value function approxi-
mation still contained sufficient error to produce a few poor
action choices. The kWTA network, in comparison, consis-
tently converged on good approximations of the value func-
tion, almost always resulting in optimal paths to the goal.

Linear BP kWTA

M
S
E

o
f
R
e
w
a
r
d

0

10

20

30

40
*

*

Figure 2: Averaged over 20 simulations of each network type,
these columns display the mean squared deviation of accu-
mulated reward from that of optimal performance. Error bars
show one standard error of the mean.

For each network, we assessed the quality of the paths pro-
duced. For each simulation, we froze the connection weights,
and we produced an episode for each possible starting loca-
tion, except for locations inside of the puddles. The reward
accumulated over each episode was recorded, and, for each
episode that ended at the goal location, we calculated the sum
squared deviation of these accumulated reward values from
that produced by an optimal agent (constructed using SARSA
with a look-up table for the value function). The mean of this
error measure, over all successful episodes, was recorded for
each of the 20 simulations run for each of the 3 network types.
Figure 2 shows the means of these values, over 20 simula-
tions. The backpropagation network had significantly less er-
ror than the linear network (t(38)= 4.692; p < 0.001), and the
kWTA network had significantly less error than the standard
backpropagation network (t(38) = 7.314; p < 0.001). On av-
erage, the kWTA network deviated from optimal performance
by less than one reward point.

We also recorded the fraction of episodes which succeeded
at reaching the goal for each simulation run. The mean rate
of goal attainment, across all non-puddle starting locations,
for the linear network, the backpropagation network, and the
kWTA network were 93.3%, 99.0%, and 99.9%, respectively.
Despite these consistently high success rates, the linear net-
work exhibited significantly more failures than the backprop-
agation network (t(38) = 2.306; p < 0.05), and the backprop-
agation network exhibited significantly more failures than the
kWTA network (t(38) = 2.138; p < 0.05).

Conclusions, Discussion, & Future Work
These simulation results demonstrate that a mechanism for
learning sparse conjunctive codes for the agent’s sensory state
can help overcome learning problems observed when using
TD Learning with a value function approximator. Artifi-
cial neural networks can be biased toward producing such

sparse codes over their hidden units by including a process
akin to the sort of pooled lateral inhibition that is ubiqui-
tous in the cerebral cortex.1 In this way, these simulation re-
sults lend preliminary support to the hypothesis that the mid-
brain dopamine system does, indeed, implement a form of
TD Learning, and the observed problems with TD Learning
do not arise in the brain due to the encoding of sensory state
information in circuits that make use of lateral inhibition.

This work was prompted by the failures of TD Learning
on some simple machine learning tasks, reported by Boyan
and Moore (1995). It is interesting to note that our standard
backpropagation network performance results are much bet-
ter than the analogous results reported by those researchers.
It is not clear if this discrepancy involves subtle differences
in learning parameters, arises from our scheme for encoding
coordinate values as inputs to the neural networks, or was
caused by some other unknown factor. While our simulations
demonstrate clear benefits from using the kWTA mechanism,
the performance of our backpropagation networks was not as
bad as what was previously reported in the literature.

We are currently extending this work in two primary di-
rections. First, we are applying our kWTA value function
approximator to other reinforcement learning problems that
have posed difficulties for TD Learning. The first of these is
the “mountain car” control problem, which involves a value
function with difficult non-linearities (Sutton & Barto, 1998).
Second, while the work reported here focuses on improv-
ing machine learning methods, we are also interested in ap-
proaches that more closely match computational cognitive
neuroscience models of feedforward and feedback inhibition
in the brain, as well as more biologically plausible learning
procedures (O’Reilly & Munakata, 2001).

Acknowledgments
The authors thank the Computational Cognitive Neuroscience
Laboratory (CCNL) at the University of California, Merced
(UCM), as well as five anonymous reviewers, for their feed-
back. We are grateful for travel support from the UCM
School of Engineering, awarded to the first author.

References
Albus, J. S. (1975). A new approach to manipulator con-

trol: The cerebellar model articulation controller CMAC.
Journal of Dynamic Systems, Meaasurement, and Control,
97(3), 220–227.

Boyan, J. A., & Moore, A. W. (1995). Generalization in rein-
forcement learning: Safely approximating the value func-
tion. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.),
Advances in neural information processing systems 7 (pp.
369–376). Cambridge, MA: MIT Press.

Dayan, P. (1992). The convergence of TD(λ) for general λ.
Machine Learning, 8, 341–362.

1Of course, sparse codes can be produced in other ways, as well,
such as introducing a “sparseness constraint” regularization term to
the learning process (French, 1991; Hoyer, 2004).

1935



Linear

1

Estimate of Value Function

y
0.5

01
0.5
x

0
0

50

100

−
Q

m
ax

x
0 0.5 1

y

0

0.5

1
Policy map

Episodes
0 10,000 20,000 30,000 40,000

m
ea
n
(δ
)

-5

-4

-3

-2

-1

0
Mean value of δ allover each episode

BP

1

Estimate of Value Function

y
0.5

01x

0.5
0
0
50
100

−
Q

m
ax

x
0 0.5 1

y

0

0.5

1
Policy map

Episodes
0 10,000 20,000 30,000 40,000

m
ea
n
(δ
)

-5

-4

-3

-2

-1

0

kWTA

1

Estimate of Value Function

y
0.5

01
0.5
x

0
0
50
100

−
Q

m
ax

x
0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Policy map

Episodes
0 10,000 20,000 30,000 40,000

m
ea
n
(δ
)

-5

-4

-3

-2

-1

0
Mean value of δ allover each episode

Figure 3: The performance of various learned value function approximators may be compared in terms of their success at
learning the true value function, the resulting action selection policy, and the amount of experience in the environment needed
to learn. The approximated value functions, expressed as maxa Q̂(s,a) for each location, s, appears on the left. The ac-
tions selected at a grid of locations is shown in the middle column. The learning curve, showing the TD Error over learning
episodes, is shown on the right. The rows display results for representative neural networks of the three kinds explored: linear,
backpropagation, and kWTA, respectively, from top to bottom.

Dayan, P., & Niv, Y. (2008). Reinforcement learning: The
good, the bad and the ugly. Current Opinion in Neurobiol-
ogy, 18, 185–196.

French, R. M. (1991). Using semi-distributed representations
to overcome catastrophic forgetting in connectionist net-
works. In Proceedings of the 13th annual cognitive science
society conference (pp. 173–178). Hillsdale, NJ: Lawrence
Erlbaum.

Hoyer, P. O. (2004). Non-negative matrix factorization with
sparseness constraints. CoRR, cs.LG/0408058. Retrieved
from http://arxiv.org/abs/cs.LG/0408058

Kandel, E., Schwartz, J., Jessell, T., Siegelbaum, S., & Hud-
speth, A. J. (2012). Principles of neural science (Fifth
Edition ed.). New York: McGraw-Hill.

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A
framework for mesencephalic dopamine systems based on
predictive hebbian learning. Journal of Neuroscience, 16,
1936-1947.

O’Reilly, R. C., & Munakata, Y. (2001). Computational
explorations in cognitive neuroscience. Cambridge, Mas-

sachusetts: MIT Press.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986).

Learning representations by back-propagating errors. Na-
ture, 323, 533–536.

Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses
of monkey dopamine neurons to reward and conditioned
stimuli during successive steps of learning a delayed re-
sponse task. Journal of Neuroscience, 13, 900–913.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neu-
ral substrate of prediction and reward. Science, 275(5306),
1593–1599.

Sutton, R. S. (1996). Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In
D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.),
Advances in neural information processing systems 8 (pp.
1038–1044). Cambridge, MA: MIT Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning:
An introduction. Cambridge, MA: MIT Press.

Tesauro, G. (1995). Temporal difference learning and TD-
Gammon. Communications of the ACM, 38(3).

1936


