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Abstract
Temporal Difference (TD) Learning is a leading account of
the role of the dopamine system in reinforcement learn-
ing. TD Learning has been shown to fail to learn some
fairly simple control tasks, however, challenging this ex-
planation of reward-based learning. We conjecture that
such failures do not arise in the brain because of the ubiq-
uitous presence of lateral inhibition in the cortex, produc-
ing sparse distributed internal representations that sup-
port the learning of expected future reward. We provide
support for this position by demonstrating the benefits of
learned sparse representations for two problematic con-
trol tasks: mountain car and acrobat.
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Background
A class of reinforcement learning algorithms called Temporal
Difference (TD) Learning succeeds at identifying good policy
functions, mappings from the state of the agent to selected
actions, by simultaneously learning a value function, mapping
states to values, each value being an estimate of the expected
future reward (Sutton & Barto, 1998). Interestingly, there are
some fairly simple reinforcement learning problems for which
TD Learning has been demonstrated to fail (Boyan & Moore,
1995). Failures arise when the state space is large and com-
plex, so the value function must be learned by a nonlinear
function approximator, such as a multi-layer artificial neural
network. One issue is that the feedback used to learn the
value function offers a moving target, making it difficult for
learning to converge. Another issue is that value function ap-
proximators are typically biased toward continuity, with simi-
lar states tending to have similar values. In some cases, this
bias can make an improvement in the value estimate of one
state cause an “unlearning” of information about similar states.
Recent reinforcement learning systems, using deep learning
methods to approximate the value function, typically address
these problems by integrating feedback over many trials be-
fore updating the value function, introducing additional mem-
ory needs and potentially slowing learning (Silver et al., 2016).

An alternative approach is to encode states using sparse
distributed representations — high dimensional vectors in
which most of the elements are zero. When used as input
to a value function approximator, such representations have
been shown to support learning convergence (Sutton, 1996).
Sparse coding limits the impact of feedback for a state to only
very similar states, reducing problems of “unlearning” as the

value function chases a moving target. A major drawback of
this approach, however, is the need to engineer a sparse state
representation for the specific learning problem at hand.

TD Learning has enjoyed substantial success in account-
ing for learning in the brain, focusing on the role of dopamine
in synaptic plasticity (Montague, Dayan, & Sejnowski, 1996).
This raises the question of how the brain addresses value
function approximation problems. We propose that an impor-
tant part of the answer involves the ubiquity of lateral inhibition
in cortex, supporting the learning of internal sparse distributed
representations of agent states. Lateral inhibition in cortex has
been shown to approximate a k-Winners-Take-All (kWTA) dy-
namic, in which activity is suppressed in all neurons in an area
except those that are most active (O’Reilly, 2001). We have
explored this conjecture by investigating the TD Learning of
problematic control problems, using a multi-layer perceptron
as a value function approximator, with a kWTA constraint on
learned hidden layer representations. We have previously re-
ported performance on the puddle world task (Rafati & Noelle,
2015). Here, we report on mountain car and acrobat.

General Methods
In each learning problem, the agent state was captured by a
small set of real variables. Each was encoded as a vector, with
each dimension assigned a preferred variable value and the
preferences spread uniformly across the variable’s range. For
a given state variable value, each vector element was set to
a magnitude in [0,1] based on its preferred value, determined
by a Gaussian centered at the state variable value.

The vectors encoding the state variables were input to an
artificial neural network value function approximator. The net-
work had one output for each possible action, and each linear
output unit was trained to estimate the expected future reward
for being in the given state and taking the action associated
with that output (i.e., Q̂(s,a)). The network was trained using
the SARSA TD Learning algorithm (Sutton & Barto, 1998),
with error only applied to the output for the action taken. The
most active output unit determined the action choice, but an
ε-greedy strategy was used to ensure exploration. The agent
received a reward of −1 on each time step until the goal was
achieved, producing a reward of 0 and ending the trial.

The hidden units used a logistic sigmoid activation func-
tion. Importantly, they all had their activations forced to zero
except the k units with the greatest net inputs. The k parame-
ter was 10% of the number of hidden units. Only connection
weights associated with active hidden units were updated dur-
ing learning. Performance was compared to that of a network
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Figure 1: Mountain Car (top) and Acrobat (bottom) Learning Performance

without the kWTA constraint (i.e., a standard backpropagation
network), as well as to a linear network with no hidden layer.
Connection weights were initialized to uniformly sampled val-
ues from [−0.05,0.05], and the learning rate was 0.002.

Mountain Car
In the mountain car control problem, the agent was a car
that could perform three actions: forward throttle, neutral, and
backward throttle. The state of the agent involved two vari-
ables: the car location and the car velocity. The goal was
to reach the top of a mountain, ahead, but the car could not
generate enough thrust to drive straight there. It had to learn
to first back away, up an adjacent hill, in order to produce a
gravitational assist when subsequently moving forward.

The value function approximator encoded each state vari-
able over a 61-dimensional vector, producing 122 inputs, and
used 2604 hidden units (k = 260).

Figure 1 (top) shows representative performance over train-
ing trials. Note the stable learning of kWTA (TD error, δ, at 0)
and the robust efficient solution that is found (steps).

Acrobat
In the acrobat control problem, the agent controlled the torque
on the central joint of a double pendulum, chosing one of three
actions: none, clockwise, and counter-clockwise. The state
had three variables: the two joint angles and the correspond-
ing rotational velocities. The goal was to bring the tip of the
pendulum above a threshold, well above the base joint.

The value function approximator encoded each state vari-
able over a 21-dimensional vector, producing 84 inputs, and
used 8400 hidden units (k = 840).

Figure 1 (bottom) shows representative performance over

training trials. Note the stable learning of kWTA (TD error, δ,
at 0) and the robust efficient solution that is found (steps).
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