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ABSTRACT
Carbon nanotubes (CNTs) are capable to absorb and encap-

sulate some molecules to create new hybrid nano-structures pro-
viding a variety of functionally useful properties. CNTs function-
alized by encapsulaitng single-stranded deoxy-ribonucleic acid
(ssDNA) promise great potentials for applications in nanotech-
nology and nano-biotechnology. In this paper, buckling insta-
bility of ssDNA@CNT i.e. hybrid nano-structure composed of
ssDNA encapsulated inside CNT has been investigated using the
nonlocal elasticity theory. The nonlocal elasticity theory is ca-
pable to capture the small scale effects due to the discontinuity
of nano-structures at atomic scales. The nonlocal elastic rod
and shell equations are derived for modeling ssDNA and CNT
respectively. Providing numerical examples, it is predicted that,
ssDNA@(10,10) CNT is more resistant than the pristine (10,10)
CNT against the buckling instability under radial pressure due
to the inter-atomic van der Waals interactions between DNA and
CNT. Furthermore, nonlocal elasticity theory predicts lower crit-
ical buckling pressure than does the local elasticity theory.

1. INTRODUCTION
Carbon nanotubes (CNTs) are 4th allotrope of carbon with

a graphitic hexagonal lattice [1] and since CNTs have hollow
cylindrical shape, they are capable to absorb and encapsulate
atoms and small molecules [2] and nano-structures such as C60
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fullerenes [3], linear carbon chain (C-chain) [4] and single-
stranded DNA (ss-DNA) [5, 6]. The inter-atomic van der Waals
(vdW) interaction between encapsulated material and CNT plays
the main role in the insertion and encapsulation process [6, 7].
Encapsulation is one of the alternative ways for “functionaliza-
tion” of CNT by creating a new hybrid nano-structure. In partic-
ular, encapsulation alters the physical, electrical and mechanical
characteristics of CNT [6, 8, 9] providing for new functional ca-
pabilities. Carbon nanotubes functionalized with other materials,
specially biological species have been developed for biomedi-
cal and biotechnological applications, including drug delivery,
enzyme immobilization and DNA transfection [6], for applica-
tions in manufacturing of nano-electronic devices [10], probes
and sensors [6, 11] and for applications in nano-robotics [12].
In many of these applications, the functionalized CNTs are sub-
jected to mechanical loading. The molecular dynamic (MD) sim-
ulations predicts that carbon nanotubes and their hybrid nano-
structures are highly elastic [13] and buckle under high stress
for various mechanical loading scenarios, such as axial compres-
sion [14], torsional moment [15], external radial pressure [16]
and bending moment [17]. Analysis of how encapsulation al-
ters the buckling behavior has gained recent attention in the fast-
growing research field of functionalized CNTs. For example,
the encapsulation of C60 fullerenes inside (10,10) CNT, which
occurs spontaneously results in a hybrid nano-structure that is
more resistant to buckling than is the pristine CNT as predicted
by both MD simulations and continuum theory [13–15, 17–19].
Similar behavior has been predicted from MD simulations and
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continuum theory for nanowires, which are hybrid nano-structure
with C-Chains encapsulated into CNT, under various mechanical
loading scenarios [20, 21].

Although MD simulations are suitable for investigating the
mechanical characteristics of nano-structures, they are time-
consuming and computationally expensive for large-sized sys-
tems. Continuum theories on the other hand have recently pro-
vided very efficient tools to simulate and analyze the dynamics
of several nano-structures. For example, the models of CNT
based on shell theory successfully predict their dynamic behav-
ior in deformation including onset of buckling instability un-
der axial loading [22, 23], uniform external pressure [24], bend-
ing [25] and torsional moments [26]. Likewise, thin filament
models based on elastic rod theory are evolving to simulate bend-
ing and twisting deformations of DNA [27–29] including loop-
ing [30–33] and supercoiling due to torsional buckling [34, 35].

While most of the continuum models make simplistic
course-grained approximations, efforts are underway to develop
methods for deriving constitutive laws for continuum approxi-
mations directly from MD simulations [36–39]. In several nano-
structure applications, however, the spacing between atoms can
be significant relative to the length scale of deformation of inter-
est. Hence, the conventional continuum theories that are based
on the philosophy of the structural continuity can still be in-
accurate. The “nonlocal elasticity theory” introduced by Erin-
gen [40, 41] overcomes this inaccuracy by taking the small scale
effects of the structural discontinuity into account empirically in
the constitutive law. The continuum models of CNTs based on
nonlocal elasticity are therefore more accurate [42–45] than the
conventional local elasticity theory. The nonlocal elastic shell
model has been used for CNTs to analyze buckling instability
under radial pressure [46], axial loading [47], and torsional mo-
ment [48], and to analyze thermal buckling instability [49], vi-
bration behavior [50] and the wave propagation [51]. It is note-
worthy that nonlocal elasticity predicts less resistance to buck-
ling than does the local elasticity [18, 19, 45, 46, 48, 49].

In this paper, we employ the nonlocal elasticity theory to
investigate the buckling instability of a special type of hybrid
nano-structure ssDNA@SWCNT, which is single-walled carbon
nanotube (SWCNT) encapsulated with a single-stranded deoxy-
ribonucleic acid (ssDNA). Section 2 begins with reviewing the
nonlocal elasticity theory and the nonlocal shell model that we
use for SWCNT. We next introduce the nonlocal elastic rod
model for ssDNA in Section 2. In section 3, we derive the contin-
uum representation for atomic interaction between encapsulated
ssDNA and SWCNT as distributed force on ssDNA and internal
vdW pressure on SWCNT. Then we substitute these force and
pressure interactions in nonlocal shell and rod models described
in section 2 to derive naturally coupled equations governing the
stability of ssDNA@CNT in section 4. Then we use the gov-
erning equations to investigate the buckling of the hybrid nano-
structure under uniform external radial pressure. We also derive

eigen-value formulation to calculate the critical pressure for the
onset of radial buckling in terms of all axial and circumferen-
tial buckling modes. In section 5, we present results illustrating
the applicability of the nonlocal models for predicting the crit-
ical pressure for special hybrid ssDNA@(10,10) CNT and also
the effect of encapsulated ssDNA in the hybrid nano-structure
compared with pristine (10,10) CNT, and finally we verify the
predictions of our model with existing results based on MD sim-
ulations and continuum theory in similar phenomena for other
categories of hybrid nano-structures such as one specific nano-
peadpod (C60@(10,10) SWCNT) [13–15, 17–19] and also (5,5)
and (0,9) nanowires [20, 21].

2. NONLOCAL ELASTIC MODELS
2.1. Constitutive Law in Nonlocal Elasticity Theory

In the conventional theory of local elasticity, the stress ten-
sor σ at a material point x of a continuous body is a function
of the strain tensor ε at that point x only and has no explicit de-
pendence on neighboring material points i.e.“nonlocal points”.
This assumption breaks down at the length scales of inherent dis-
creteness of nano-structures. This discrepancy is circumvented
in the nonlocal elasticity theory introduced by Eringen [40, 41],
in which stress tensor σ at a material point explicitly depends
on to strain tensor field ε not only at that point but also at the
surrounding points in the body Ω with appropriate weight distri-
bution. The constitutive equation for nonlocal elasticity theory
has been suggested by Eringen [41] in the integral form as:

σ(x) =
∫∫∫

Ω

Γ(|x′−x|,τ) C : ε(x′)dV. (1)

Here, Γ(|x′− x|,τ) is weight distribution, also called nonlocal
modulus and |x′−x| is the distance between a local point x and
a nonlocal point x′. C denotes the fourth order elasticity tensor
and the colon “:” in C : ε stands for double contraction. Also
τ = e0a/l, where a is the internal characteristic length (e.g. bond
lengths), l is the external characteristic length (e.g. structural
length), and e0 as a material parameter empirically determined
for a nanostructure to make an agreement between experimental
measurements and continuum model predictions [41, 42, 49, 51].
By assuming appropriate Γ, Eringen developed the differential
form of nonlocal constitutive equation based on integral form in
Eqn. (1) as [41, 49]:

(1−η
2
∇

2)σ = C : ε, (2)

where η = τl = e0a is referred to as the small scale coeffi-
cient [49,51] and ∇2 is the Laplacian operator. Recognizing that
∇∼ 1/l, note that when the internal characteristic length is negli-
gible with respect to the external characteristic length, i.e. when
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FIGURE 1. Schematic of Rod-Shell model for ssDNA@SWCNT.

η/l→ 0, the nonlocal constitutive law Eqn. (2) approaches the
familiar constitutive law in local elasticity theory σ = C : ε .

2.2. Nonlocal Elastic Shell Model
This section reviews the Donnell’s nonlocal shell model that

is extensively developed in [19,46,49]. Consider a hollow cylin-
drical shell with length L, mean radius R and thickness h as
shown in Fig. 1. Let (x,θ ,r) be the axial, circumferential and
radial coordinates of any material point of the shell in the refer-
ence configuration and u = (u1,u2,u3) be the displacement field
of the shell along these coordinates. Based on the Donnell’s as-
sumptions for thin shells, u is given by [52]:

u =

u1
u2
u3

=


u(x,θ)− (r−R) ∂w

∂x
v(x,θ)− r−R

R
∂w
∂θ

w(x,θ)

 , (3)

where (u,v,w) denotes displacement field of the mid-surface i.e.
cylindrical surface at r = R in Fig. 1.

The radial normal stress σr is neglected in comparison to σx
and σθ . Substituting displacement field given by Eqn. (3) into
εi j =

1
2 (ui, j+u j,i), the components of strain tensor ε are obtained

as:

εx = u1,x = u,x− (r−R)w,xx, (4a)

εθ =
u2,θ

R
=

v,θ
R

+
w
R
− r−R

R2 w,θθ , (4b)

γxθ =
u1,θ

R
+u2,θ =

u,θ
R

+ v,x−2
r−R

R
w,xθ , (4c)

where u,x = ∂u/∂x and so on. From Eqn. (2), the nonlocal con-
stitutive law for isotropic material is

(1−η
2
∇

2)

σx
σθ

τxθ

=
E

1−ν2


εx +νεθ

νεx + εθ

1−ν

2 γxθ

 , (5)

where E is elastic Young’s modulus, ν is the Poisson’s ratio and
the Laplacian operator ∇2 = ∂ 2

∂x2 +
1

R2
∂ 2

∂θ 2 . The axial, circum-
ferential and shearing forces (Nx,Nθ ,Nxθ ) per unit length due to
corresponding stress components are defined as [49]:

 Nx
Nθ

Nxθ

=
∫ R+h/2

R−h/2

σx
σθ

τxθ

 dr. (6)

Substituting Eqn. (4) in (5) and the result into (6), we get

(1−η
2
∇

2)

 Nx
Nθ

Nxθ

= K


u,x + ν

R (v,θ +w)
vθ/R+w/R+νu,x
(1−ν)

2 (u,θ/R+ v,x)

 , (7)

where K = Eh/(1− ν2) is called the effective axial stiffness.
Similarly, the resultant moments per unit length (Mx,Mθ ,Mxθ )
due to corresponding stress components are defined as [49]:

Mx
Mθ

Mxθ

=
∫ R+h/2

R−h/2

σx
σθ

τxθ

(r−R)dr. (8)

Substituting Eqn. (4) in (5) and the result into (8), we get

(1−η
2
∇

2)

Mx
Mθ

Mxθ

=−D


w,xx +νw,θθ/R,
w,θθ/R2 +νw,xx,

(1−ν)
R w,xθ ,

 , (9)

where D = Eh3/12(1−ν2) is called the effective bending stiff-
ness of the shell [46,49]. The linearized equations of equilibrium
for the shell element in terms of the resultant forces and moments
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per unit length are [52]:

Nx,x +
1
R

Nxθ ,θ = 0, (10)

Nxθ ,x +Nθ ,θ = 0, (11)

Qxr,x +
1
R

Qθr,θ +
∂

∂x

(
Nx

∂w
∂x

)
+

1
R

∂

∂x

(
Nxθ

∂w
∂θ

)
+

1
R

∂

∂θ

(
Nxθ

∂w
∂x

)
+

1
R

∂

∂θ

(
Nθ

∂w
∂x

)
−Nθ

R
− pnet = 0,

(12)

where Qxr and Qθr denote the resultant shearing forces in the
radial direction and pnet = pext − pint denotes the net external
pressure on the shell. The rotational equilibrium of shell element
is satisfied when [52]:

Qxr = Mx,x +
1
R

Mθx,θ , (13)

Qθr = Mxθ ,x +
1
R

Mθ ,θ . (14)

Substituting Eqns. (13) and (14), Eqn. (12) can be written in
terms of the resultant moments as:

Mx,xx +
2
R

Mxθ ,xθ +
1

R2 Mθ ,θθ +Ψ[w]− Nθ

R
− pnet = 0, (15)

where

Ψ[.] = Nx
∂ 2

∂x2 +2Nxθ

1
R

∂ 2

∂x∂θ
+Nθ

1
R2

∂ 2

∂θ 2 (16)

is a differential operator [48,49]. Applying the nonlocal elasticity
operator (1−η2∇2) to the equilibrium Eqns. (10, 11, 15) and
then substituting the resultant forces and moments from Eqns.
(7) and (9), the equilibrium equations in terms of displacement
field are obtained as:

K
[

uxx +ν
vxθ

R
+ν

w,x

R
+

1−ν

2

(
uθθ +

v,xθ

R

)]
= 0, (17)

K
[

1−ν

2

(
1
R

u,xθ + v,xx

)
+ vθθ +

w,θθ

R2 +
ν

R
u,xθ

]
= 0, (18)

−D
[
w,xxxx +

ν

R2 w,xxθθ +
1

R4 w,θθθθ +
ν

R2 w,xxθθ

+
2(1−ν)

R2 w,xxθθ

]
+(1−η

2
∇

2)Ψ[w]

−K
R

(
u,x +

ν

R
v,θ +

ν

R
w
)
− (1−η

2
∇

2)pnet = 0.

(19)

Eliminating u and v from Eqns. (17)-(19), we arrive at the non-
local Donnell’s equilibrium equation for a tubular shell [48, 49]:

D∇
8w+

Eh
R2

∂ 4w
∂x4 − (1−η

2
∇

2)∇4
Ψ[w]

−(1−η
2
∇

2)∇4 pnet = 0.
(20)

Note that by setting η → 0 , i.e. ignoring the small scale effects,
Eqn. (20) will approach the well-known classical Donnell’s shell
stability equation.

2.3. Nonlocal Elastic Rod Model
Consider a circular rod with length L and radius Rd as Fig

1. The Rod model can sustain axial force Fx, shearing forces
(Ny,Nz) , bending moments (My,Mz) about both transverse y and
z directions and also torsional moment Mx about x direction. Let
ud = (u1

d ,u
2
d ,u

3
d) be displacement field of a point (x,y,z) on the

rod. Based on the Euler-Bernoulli beam theory, the displacement
field for a rod is given by

u1
d

u2
d

u3
d

=

ud(x)+ y dvd
dx − z dwd

dx
vd(x)
wd(x)

 , (21)

where (ud ,vd ,wd) is the displacement field of the rod’s center-
line. Force balance in static equilibrium of a rod element yields

Fx(x+dx)−Fx(x)− fxdx = 0, (22a)

Ny(x+dx)+
(

Fx
dvd

dx

)∣∣∣∣
x+dx
−Ny(x)−

(
Fx

dvd

dx

)∣∣∣∣
x
+ fydx = 0,

(22b)

Nz(x+dx)+
(

Fx
dwd

dx

)∣∣∣∣
x+dx
−Nz(x)−

(
Fx

dwd

dx

)∣∣∣∣
x
+ fzdx = 0,

(22c)

and the moment balance yields

Mx(x+dx)−Mx(x) = 0, (23a)
My(x+dx)−My(x)−Nzdx = 0, (23b)
Mz(x+dx)−Mz(x)−Nydx = 0, (23c)

where ( fx, fy, fz) are the external distributed forces on the rod per
unit length. We assume fx to be negligible in comparison to fy
and fz so that Fx is constant. Then, Eqns. (22, 23) reduce to

∂ 2

∂x2

[
Mz
My

]
+Fx

∂ 2

∂x2

[
vd
wd

]
+

[
fy
fz

]
= 0. (24)
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Nonlocal constitutive equation from Eqn. (2) is:

(1−η
2
∇

2)σx = Ed εx, (25)

where Ed is the Young’s modulus of rod material (i.e. ssDNA),
∇2 = d2/dx2 and εx = u1

d,x = ud,x + yvd,xx − zwd,xx is the axial
strain. The resultant bending moments (My,Mz) due to σx over
cross section area of the rod is[

Mz
My

]
=
∫

A

[
−y
z

]
σx dA, (26)

where A is the cross-section area. Substituting for εx from Eqn.
(21) in constitutive equation (25) and using Eqn. (26) to elimi-
nate σx, we arrive at

(1−η
2
∇

2)

[
My
Mz

]
=−Ed I

[
wd,xx
vd,xx

]
, (27)

where

I =
[

Iyy 0
0 Izz

]
=

[∫
A z2 dA 0

0
∫

A y2 dA

]
(28)

is the tensor of 2nd moment of the cross section area of the rod,
assuming y and z to be the principal bending directions.

Applying the nonlocal elasticity operator (1−η2∇2) to the
equilibrium Eqn. (24) and then substituting the resultant mo-
ments from Eqn. (27), the equilibrium equations in terms of dis-
placement field are obtained as:

−EdIzz
d4vd

dx4 +Fx

(
d2vd

dx2 −η
2 d4vd

dx4

)
+

(
1−η

2 d2

dx2

)
fy = 0,

(29)

−EdIyy
d4wd

dx4 +Fx

(
d2wd

dx2 −η
2 d4wd

dx4

)
+

(
1−η

2 d2

dx2

)
fz = 0.

(30)

Note that in this derivation, we ignored the torsional moment Mx,
which is expected to be negligible for ssDNA in the buckling
analysis of ssDNA@SWCNT.

3. VAN DER WAALS INTERACTIONS
Consider the hybrid nano-structure (ssDNA@SWCNT)

composed of a single-strand DNA encapsulated inside an

SWCNT with length of L and mid-surface radius R co-axially
as seen in Fig. 1. Let UvdW denote the total vdW potential en-
ergy stored in ssDNA@SWCNT due to the insertion and encap-
sulation of ssDNA inside SWCNT, which is the sum of all inter-
atomic vdW potential energy between ssDNA and SWCNT. We
assume that UvdW is only dependent on radial distance, rc from
centerline of ssDNA to mid-surface of SWCNT. The Taylor se-
ries expansion of UvdW about the initial configuration of ssDNA
and CNT i.e. rc = R is

UvdW =UvdW (R)+
∂UvdW

∂ rc

∣∣∣∣
R
(rc−R)+

1
2

∂ 2UvdW

∂ r2
c

∣∣∣∣
R
(rc−R)2 + . . .

(31)

The equivalent internal vdW pressure distribution pvdW enforced
on SWCNT due to the encapsulated ssDNA can be obtained as

pvdW =
1

2πRL
∂UvdW

∂ rc
. (32)

The change in distance between ssDNA and SWCNT from the
reference configuration can be written as

rc−R = w(x,θ)− vd(x)cos(θ)−wd(x)sin(θ), (33)

recalling that w is the radial displacement of mid-surface points
of SWCNT and (vd ,wd) denotes the displacement of ssDNA in
(y,z) directions respectively. Substituting Eqn. (31) and (33) into
(32) up to the first order approximation of displacement terms,
we obtain the equivalent vdW pressure distribution on SWCNT
due to encapsulated ssDNA as

pvdW = p0− cd [w(x,θ)− vd(x)cos(θ)−wd(x)sin(θ)] , (34)

where p0 =
1

2πRL
∂UvdW

∂ r

∣∣∣
R

is the initial vdW pressure on SWCNT

%endequation and cd = 1
2πRL

∂ 2UvdW
∂ r2

∣∣∣
R

is the vdW pressure co-
efficient of ssDNA and SWCNT interaction. The vdW reaction
force distribution components on ssDNA from SWCNT can be
obtained as follows:

fy(x) =
∫ 2π

0
RpvdW cos(θ)dθ , (35)

fz(x) =
∫ 2π

0
RpvdW sin(θ)dθ , (36)

where ( fy, fz) denote the vdW force on ssDNA per unit length in
the transverse y and z directions respectively.
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4. EQUATIONS GOVERNING STABILITY OF ss-
DNA@SWCNT
To analyze buckling of ssDNA@SWCNT, we model ssDNA

by nonlocal elastic rod and SWCNT by nonlocal elastic shell de-
scribed in Section 2, and use the equivalent pressure and force
distribution described in Section 3 for vdW non-bonded interac-
tion between ssDNA and SWCNT. Substituting the vdW pres-
sure distribution on SWCNT due to encapsulation of ssDNA
from Eqn. (34) into Eqn. (20) and the distributed vdW force
on ssDNA from Eqns. (35, 36) into Eqn. (29, 30), stability of
hybrid ssDNA@SWCNT is governed by

D∇
8w+

Eh
R2

∂ 4w
∂x4 − (1−η

2
∇

2)∇4
Ψ[w]

+(1−η
2
∇

2)∇4cd [w− vd cos(θ)−wd sin(θ)] = 0.
(37)

−EdIzz
d4vd

dx4 +Fx

(
d2vd

dx2 −η
2 d4vd

dx4

)
+

(
1−η

2 d2

dx2

)
Rcd

(∫ 2π

0
wcos(θ)dθ ,−πvd

)
= 0,

(38)

−EdIyy
d4wd

dx4 +Fx

(
d2wd

dx2 −η
2 d4wd

dx4

)
+

(
1−η

2 d2

dx2

)
Rcd

(∫ 2π

0
wsin(θ)dθ ,−πwd

)
= 0.

(39)

These equations are in general coupled due to the vdW interac-
tion between ssDNA and SWCNT, but under some conditions
they may be decoupled. For example, assume an Ansatz solution
for the radial displacement of CNT, w as a Fourier series:

w(x,θ) = ∑
m,n

amn cos(mπx/L)cos(nθ)

+∑
m,n

bmn cos(mπx/L)sin(nθ)

+∑
m,n

cmn sin(mπx/L)cos(nθ)

+∑
m,n

amn sin(mπx/L)sin(nθ),

(40)

where m and n are two non-negative integer, and amn, bmn, cmn
and dmn are Fourier series coefficients. Substituting the Ansatz
solution, we note that Eqns. (38, 39) are coupled with Eqn. (37)
only for n = 1, and that there is no coupling between w and
(vd ,wd) for n 6= 1.

5. BUCKLING OF ssDNA@SWCNT UNDER RADIAL
PRESSURE
In any equilibrium condition having small deformation, the

hybrid structure ssDNA@SWCNT under radial pressure must

satisfy all the equilibrium equations. If the deformed state is
a stable equilibrium, the structure must restore its equilibrium
from any arbitrary perturbation. On the other hand, if the equi-
librium is unstable, it can be perturbed such that the perturbation
grows and the equilibrium is not restored. At critical loading,
the equilibrium becomes a neutral equilibrium in linear buckling
analysis. Hence, if functions w, vd and wd describe the defor-
mation of SWCNT and ssDNA in static equilibrium under the
critical radial pressure pcr , and functions w̃, ṽd and w̃d represent
the perturbations which would grow if the radial external pres-
sure exceeds pcr, Eqns. (37)-(39) will also be valid if w, vd and
wd are replaced with w+w̃, vd + ṽd and wd +w̃d . Subtracting the
new equations from Eqns. (37-39), the equations governing the
stability of hybrid structure in terms of the perturbation functions
w̃, ṽd and w̃d become

D∇
8w̃+

Eh
R2

∂ 4w̃
∂x4 − (1−η

2
∇

2)∇4
Ψ[w̃]

+(1−η
2
∇

2)∇4cd [w̃− ṽd cos(θ)− w̃d sin(θ)] = 0.
(41)

−EdIzz
d4ṽd

dx4 +Fx

(
d2ṽd

dx2 −η
2 d4ṽd

dx4

)
+

(
1−η

2 d2

dx2

)
Rcd

(∫ 2π

0
w̃cos(θ)dθ ,−π ṽd

)
= 0,

(42)

−EdIyy
d4w̃d

dx4 +Fx

(
d2w̃d

dx2 −η
2 d4w̃d

dx4

)
+

(
1−η

2 d2

dx2

)
Rcd

(∫ 2π

0
w̃sin(θ)dθ ,−πw̃d

)
= 0.

(43)

If the hybrid structure is subjected just to radial external pressure
pext , the axial, normal and shear stresses in SWCNT vanish.
The circumferential normal stresses occur only due to the vdW
pressure from ssDNA exerted on the CNT. The axial, shearing
and circumferential resultant forces are given by

Nx = 0, (44a)
Nxθ = 0, (44b)

Nθ = R(−pext + p0). (44c)

Substituting resultant forces into ψ from Eqn. (16) we get

Ψ = R(−pext + p0)
1

R2
∂ 2

∂θ 2 . (45)
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Further substituting ψ into Eqn. (43), the equation governing the
stability of ssDNA@SWCNT under radial pressure becomes

D∇
8w̃+

Eh
R2

∂ 4w̃
∂x4

−(1−η
2
∇

2)∇4R(−pext + p0)
1

R2
∂ 2

∂θ 2 w̃

+(1−η
2
∇

2)∇4cd [w̃− ṽd− w̃d ] = 0

(46)

along with Eqns. (42, 43). Next, consider the following Ansatz
solution for perturbation functions:

w̃ = W̃ sin(mπx/L)sin(nθ), (47a)
ṽd = Ṽd sin(mπx/L), (47b)
w̃d = W̃d sin(mπx/L), (47c)

where m and n are two non-negative integer representing the ax-
ial half wave-number and circumferential wave-number, and W̃ ,
Ṽd and W̃d are infinitesimal amplitudes of perturbation functions
for the buckling mode corresponding to (m,n). Let us define fol-
lowing two parameters α and β :

α =
mπx

L
, β =

n
R
. (48)

Substituting Ansatz solution, Eqn. (47) into Eqns. (46, 42, 43)
for circumferential mode n = 1, we get

(
D(α2 +β

2)4 +
Eh
R2 +

[
1+η

2(α2 +β
2)
]
× . . .

(α2 +β
2)2Rβ

2(−pext + p0)W̃ +
[
1+η

2(α2 +β
2)
]
× . . .

(α2 +β
2)2cd (W̃ −W̃d)

)
sin(αx)sin(θ)

−(1+η
2)(α2 +β

2)(α2 +β
2)2× . . .

cd(Ṽd)sin(αx)cos(θ) = 0

(49)

(
EdIzzα

4 +πRcdη
2
α

2 +πRcd
)

Ṽd sin(αx) = 0, (50)(
EdIyyα

4 +πRcdη
2
α

2 +πRcd
)

W̃d sin(αx)

= πRcd(1+η
2
α

2)W̃ sin(αx),
(51)

and also for n 6= 0,(
D(α2 +β

2)4 +
Eh
R2 +

[
1+η

2(α2 +β
2)
]
× . . .

(α2 +β
2)2Rβ

2(−pext + p0)W̃ +
[
1+η

2(α2 +β
2)
]
× . . .

. . .(α2 +β
2)2cd

)
W̃ sin(αx)sin(θ) = 0.

(52)

Eqns. (49-51, 52) are satisfied in the entire domain 0 ≤ x ≤ L
and 0≤ θ ≤ 2π (for n = 1) if

Ṽd = 0, (53)(
EdIyyα

4 +πRcdη
2
α

2 +πRcd
)

W̃d

= πRcd(1+η
2
α

2)W̃ ,
(54)(

D(α2 +β
2)4 +

Eh
R2 +

[
1+η

2(α2 +β
2)
]
× . . .

(α2 +β
2)2Rβ

2(−pext + p0)W̃ +
[
1+η

2(α2 +β
2)
]
× . . .

(α2 +β
2)2cd (W̃ −W̃d)

)
= 0,

(55)

and for n 6= 1 if(
D(α2 +β

2)4 +
Eh
R2 +

[
1+η

2(α2 +β
2)
]
× . . .

(α2 +β
2)2Rβ

2(−pext + p0)+
[
1+η

2(α2 +β
2)
]
× . . .

(α2 +β
2)2cd

)
W̃ = 0.

(56)

These algebraic equations governing the stability of ss-
DNA@SWCNT can be assembled into matrix form as[

a11 a12
a21 a22

](
W̃
W̃d

)
− pext

[
b11 0
0 0

](
W̃
W̃d

)
= 0, (57)

where ai j and b11 are given by

a11 = D(α2 +β
2)4 +

Eh
R2 +

[
1+η

2(α2 +β
2)
]
× . . .

(α2 +β
2)2 (Rβ

2 p0 + cd
) (58a)

a12 =−
[
1+η

2 (
α

2 +β
2)](

α
2 +β

2)2
cd , (58b)

a21 =−πRcd
(
1+η

2
α

2) , (58c)

a22 = EdIyyα
4 +πRcdη

2
α

2 +πRcd , (58d)

b11 =
[
1+η

2 (
α

2 +β
2)](

α
2 +β

2)2
Rβ

2. (58e)

Following Eqn. (56), for circumferential modes corresponding
to n 6= 1, the stability of the hybrid structure is governed by

(a11− pextb11)W̃ = 0, . (59)

For existence of nontrivial solution for (W̃ ,W̃d) in Eqn. (57) and
for W̃ in Eqn. (59), the following condition must be satisfied:

pext =

{
a11
b11
− a12a21

a22b11
if n = 1,

a11
b11

if n 6= 1.
(60)

7 Copyright © 2014 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 07/27/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



FIGURE 2. The critical pressure of pristine (10,10) CNT and the hy-
brid SSDNA@(10,10) CNT versus the small scale coefficient η .

The critical pressure at the onset of instability of ss-
DNA@SWCNT is minimimum pext for all axial and circumfer-
ential buckling modes (m,n).

6. NUMERICAL RESULTS AND DISCUSSION

Now, we provide numerical examples to obtain the critical
radial pressure of the hybrid structure ssDNA@(10,10) CNT us-
ing nonlocal elastic rod and shell models. Based on MD simula-
tions, Gao et al. [5] has reported that ssDNA can be inserted and
encapsulated simultaneously inside (10,10) CNT with length of
5.9 nm due to the vdW inter-atomic interaction [5, 6]. The nu-
merical values used for mechanical parameters here, for (10,10)
CNT and also for ssDNA are D = 0.85 eV, Eh = 360 Jm−2 [53],
R = 0.678 nm and Ed = 100 MPa [54,55]. The initial vdW pres-
sure p0 = 0.1 GPa and vdW interaction coefficient between ss-
DNA and SWCNT, is obtained as cd = 0.3 GPa/nm from data
in [6]. Now, we investigate the effect of filling a (10,10) CNT
by a single-strand DNA on the radial instability of the unoccu-
pied CNT. The length of the CNT and encapsulated ssDNA is
assumed to be L = 5.9 nm, which is extracted from [5, 6]. The
critical radial pressure for pristine (10,10) CNT and the hybrid
ssDNA@(10,10) for a common range of η , i.e. the range be-
low 1 nm for CNTs [49, 51] are plotted in Fig. 2. From Fig. 2,
we see that the presence of the encapsulated ssDNA inside the
(10,10) CNT results in an increase in the critical radial pressure.
This means that the functionalized (10,10) CNT with ssDNA is
stiffer and the resistance to the radial instability is enhanced by
encapsulation of ssDNA. We have also seen similar increase in
critical torque and critical axial force under the the effect of en-
capsulation of ssDNA into CNT. Although the formulation and
the results are not provided here, one can readily confirm this fact
by using appropriate resultant forces in Eqn. (44). For example,
when CNT is subjected to external torque T , the resultant forces

are

Nx = 0, (61a)

Nxθ =
T

2πR2 , (61b)

Nθ = R(−pext + p0). (61c)

A similar increase of the resistance to the buckling instabil-
ity of CNT due to encapsulation of some molecules and nano-
structures has been reported in literature. For instance, due to
the insertion of linear carbon chain (C-chain), the critical pres-
sure and critical torsional moment of carbon nanowires, i.e. the
functionalized CNT with linear carbon chain encapsulated inside
CNT [4,9], have been reported to be larger than the pristine CNT
of radius around 0.35nm such as (5,5) or (9,0) CNT [20]. Fur-
thermore, encapsulation of C60 fullerenes inside CNT leads to
a new category of hybrid CNTs called carbon nano-peapods. It
has been reported that the encapsulation of C60 fullerenes inside
(10,10) CNT results in an increase of the resistance to buckling
instability of (10,10) CNT under axial compressive force [14],
torsional moment [15,17], bending moment [17]) and radial pres-
sure [18]. In both cases of nano-wires with innermost CNT ra-
dius of 0.35nm and C60@(10,10) nano-peapods, the encapsula-
tion process has been reported to occur spontaneously. This is be-
cause of the fact that the host CNT in the mentioned range of di-
ameters makes a proper space for the nested C60 fullerenes or car-
bon chain to maintain a preferred graphitic van der Waals (vdW)
separation (i.e. 0.3nm) from the interior wall of CNT [3].The
insertion and encapsulation of ssDNA inside (10,10) CNT with
length of 5.9nm has been reported to be a spontaneous pro-
cess and the hybrid ssDNA@(10,10) is energetically more stable
[5, 6]. Therefore, similar to C60@(10,10) carbon nano-peapods
and C-chain@(5,5) or C-chain@(9,0) carbon nanowires, an in-
crease in resistance to radial buckling for ssDNA@(10,10) CNT
is not surprising.

Finally, we note from Fig. 2 that the critical pressures of
pristine (10,10) CNT and ssDNA@(10,10) for small scale coef-
ficient η = 0.15 nm are computed to be 1.65 GPa and 1.8 GPa
respectively. This implies an increase of about 10% in buckling
strength of (10,10) CNT under radial pressure due to the encap-
sulation of ssDNA.

7. CONCLUSIONS
This paper contributes a model for buckling analysis of hy-

brid CNTs functionalized by encapsulation of single-stranded
DNA by introducing nonlocal elasticity in shell model for CNT
and rod model for ssDNA. The model predicts that the encapsu-
lation increases resistance to buckling and that the nonlocal elas-
ticity theory predicts lower critical pressure than does the local
elasticity theory.
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