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Abstract—Deep learning is a highly effective machine learning
technique for large-scale problems. The optimization of non-
convex functions in deep learning literature is typically restricted
to the class of first-order algorithms. These methods rely on
gradient information because of the computational complexity
associated with the second derivative Hessian matrix inversion
and the memory storage required in large scale data problems.
The reward for using second derivative information is that
the methods can result in improved convergence properties for
problems typically found in a non-convex setting such as saddle
points and local minima. In this paper we introduce TRMinATR
– an algorithm based on the limited memory BFGS quasi-
Newton method using trust region – as an alternative to gradient
descent methods. TRMinATR bridges the disparity between first
order methods and second order methods by continuing to
use gradient information to calculate Hessian approximations.
We provide empirical results on the classification task of the
MNIST dataset and show robust convergence with preferred
generalization characteristics.

Index Terms—Quasi-Newton methods, Limited-memory
BFGS, Trust-region methods, Line-search methods, Deep
learning.

I. INTRODUCTION

Deep learning continues to emerge as a leading technique
for solving problems in a variety of fields including computer
vision, natural language processing and signal recovery [1],
[2]. As the collection of large quantities of data become
standard practice, the need to improve neural network per-
formance in an increasing number of applications becomes
imperative. While architecture and computational resources
play an important role in the effectiveness of neural networks,
the methodology used in training these networks leaves an
opportunity to increase efficiency. Typically, gradient based
optimization methods are used in order to minimize what is
commonly referred to as the loss function in a supervised
learning setting. The goal is to minimize the disparity between
the outcome provided by the neural network and the intended
result. This paper proposes the Trust-Region Minimization Al-
gorithm for Training Responses (TRMinATR) as an alternative
to gradient descent methods.
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A. Related Methods

Gradient descent based algorithms such as stochastic gra-
dient descent (SGD) have emerged as popular methods for
training deep neural networks [3]–[5]. Although they are
preferred for their ease of implementation and their relatively
low computational costs, they are not without their challenges.
These types of methods are heavily dependent on the tuning
and initialization of network parameters. As a result, complex
algorithms have been developed to overcome these restrictions
by incorporating adaptive learning rates, but continue to be
sensitive to the structure of the data [4], [6], [7]. As an
alternative to gradient descent, limited memory quasi-Newton
algorithms with line search have been implemented in a
deep learning setting [8]. These methods approximate second
derivative information improving the quality of each training
iteration and circumvent the need for application specific pa-
rameter tuning. The novelty of TRMinATR is in the use of the
L-BFGS quasi-Newton method in a trust-region setting to train
deep neural networks. TRMinATR solves the associated trust-
region subproblem, which can be computationally intensive in
large scale problems, by efficiently computing a closed form
solution at each iteration.

II. PROBLEM FORMULATION

In this section we will summarize the formulation of the op-
timization problem involved in training deep neural networks.
In particular we will discuss the need for the minimization of
the cost function as the motivation for the methods presented
in the next section.

We begin with a generalized construct of a feed forward
deep neural network. The defining characteristic of this type
of architecture is the number of hidden layers and the type
of layers used (convolutional, fully connected, etc.) [1]. In
order to describe the relationship between layers we adopt
a more generalized convention than that presented in [10].
Each layer is described by the following expression h(i) =
θ(i)(h(i−1),W (i)) for i = 1 . . . n, where n is the number of
layers. Using this convention we define h(i−1) as the input to
the current layer and h(i) as the output of the current layer.
The operator θ(i) corresponds to the architecture of the layer



Fig. 1. A LeNet deep learning network inspired by the architecture found in [9] . The neural network is used in the classification of the MNIST dataset of
hand written digits. The convolutional neural network (CNN) uses convolutions followed by pooling layers for feature extraction. The final layer transforms
the information into the required probability distribution.

and W (i) corresponds to the parameters of the layer which
are adjusted during training. We refrain from defining the
dimensions of the layer components as they are particular to
the task being completed. For example, the choice of layer
architecture θ can include fully connected layers, convolutions,
pooling layers and autoencoders [10]. Typically layers also
include an activation function such as a rectified linear unit
(ReLU), sigmoidal function or the softmax function [11], [12].
Having incorporating indices to the layer components we can
represent a neural network with a depth of n layers as

h(1) = θ(1)(h(0),W (1)),

h(2) = θ(2)(h(1),W (2)),

...
h(n) = θ(n)(h(n−1),W (n)),

During training of the neural network we pass the in-
formation h(0) through the layers and obtain the network’s
approximation of the desired output h(n). We seek to adjust
the weights W (i) in order to improve the quality of the
approximate output h(n). Learning is accomplished by min-
imizing the loss function Φ(h, h(n)). Here the letter h without
a superscript is the intended output. In image recovery this can
be a clear image, in classification this is signified by a label.
Once again the choice of loss function is determined by the
task assigned to the neural network. In problems pertaining
to image classification, the loss function is expressed as the
cross entropy function

Φ(h, h(n)) = −
∑
i

hi log(h
(n)
i ), (1)

where h and h(n) are distributions of the likelihood that the
image is correctly classified [10]. Other applications such as
denoising neural networks use the Mean Squared Error (MSE)
to compare images with their reconstructions [13]. Because
h(n) is a function of W = (W (1),W (2), . . . ,W (n)) then we
seek to

min
W

Φ(h, h(n)), (2)

using backpropagation [14].

III. METHODOLOGY

In this section, we outline two methods used to solve the
following unconstrained optimization problem

min
x∈Rn

Φ(x). (3)

Both methods seek to minimize the objective function Φ(x)
by defining a sequence of iterates {xk} which are governed
by the search direction pk. Each respective method is defined
by its approach to computing the search direction pk with
minimizing the quadratic model of the objective function
defined by

qk(p) , gTk p+
1

2
pTBkp, (4)

where gk , ∇Φ(xk) and Bk is an approximation to ∇2Φ(xk).

A. Line Search Method

Each iteration of the line search method computes search
direction pk by solving optimization subproblem

pk = arg min
p∈Rn

qk(p), (5)

and then decides how far to move along pk by choosing a step
length αk. The iteration xk updates by following relation:

xk+1 = xk + αkpk. (6)

Usually pk is required to be a descent direction and αk ∈
(0, 1] is chosen to satisfy the sufficient decrease and curvature
conditions, e.g. Wolfe conditions [15]:

Φ(xk + αkpk) ≤ Φ(xk) + c1αk∇ΦTk pk, (7a)

∇Φ(xk + αkpk)T pk ≥ c2∇Φ(xk)T pk, (7b)

with 0 < c1 < c2 < 1. The general pseudo-code for line search
method is given in Algorithm 1 (see [15] for details).

B. Trust-Region Methods

The trust-region method solves (3) using the localized
quadratic approximation of the objective function qk defined
in (4) at each iteration.

pk = arg min
p∈Rn

qk(p) subject to ‖p‖2 ≤ δk, (8)



Algorithm 1 Line search method pseudo-code.

Input: starting point x0, tolerance ε > 0

k ← 0
repeat

compute gk = ∇Φ(xk)
update L-BFGS matrix Bk
compute search direction pk by solving (5)
find αk that satisfies Wolfe Conditions in (7)
k ← k + 1

until ‖g‖ < ε or k reached to max number of iterations

where δk denotes the radius of the trust region. There is a
computational bottleneck associated with solving (8) in large-
scale optimization. This is the type of problem associated with
training neural networks. These computational costs will be
addressed in a later section.

Solving the trust-region subproblem to high accuracy re-
quires consideration of the problem’s optimality conditions for
a global solution. Methods such as those presented in [16]–
[18] make use of the following theorem:

Theorem 1: Let δ be a positive constant. A vector p∗ is a
global solution of the trust-region subproblem (8) if and only
if ‖p∗‖2 ≤ δ and there exists a unique σ∗ ≥ 0 such that
B + σ∗I is positive semidefinite and

(B + σ∗I)p∗ = −g and σ∗(δ − ‖p∗‖2) = 0. (9)

Moreover, if B + σ∗I is positive definite, then the global
minimizer is unique.
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Fig 2. An illustration of trust-region methods. For indefinite matrices, the
Newton step (in red) leads to a saddle point. The global minimizer (in blue) is
characterized by the conditions in Eq. (9) with B+σ∗I positive semidefinite.
In contrast, local minimizers (in green) satisfy Eq. (9) with B + σ∗I not
positive semidefinite.

The general pseudo-code for trust region method is given in
Algorithm 2. (see [15], [18] for details).

C. Quasi-Newton Methods

Methods that use Bk = ∇2Φ(xk) for the Hessian in the
quadratic model in (4) typically exhibit quadratic rates of con-
vergence. However, there are several assumptions needed to
ensure this approach is computationally feasible. First, solves

Algorithm 2 Trust region method pseudo-code.

Input: starting point x0, tolerance ε > 0, δ̂ > 0,
δ0 ∈ (0, δ̂), η ∈ [0, 1/4)

k ← 0
repeat

compute gk = ∇Φ(xk)
update L-BFGS matrix Bk
compute search direction pk by solving (8)
ρk ← (Φ(xk)− Φ(xk + pk))/(qk(0)− qk(pk))
update trust-region radius δk
if ρk > η then

xk+1 = xk + pk
else

xk+1 = xk
end if
k ← k + 1

until ‖gk‖ < ε or k reached to max number of iterations

with the matrix ∇2Φ(xk) must be done efficiently. For large-
scale problems, unless ∇2Φ(xk) has structure that can easily
be exploited, this is generally not the case. Second, ∇2Φ(xk)
must have the positive eigenvalues so that the resulting search
direction pk is guaranteed to be a descent direction. Third,
∇2Φ(xk) must be computationally available. In applications
such as inverse problems, computing ∇2Φ(xk) requires solv-
ing a system of partial differential equations, which may or
may not have an expression for the Hessian. In cases where
using the Hessian matrix ∇2Φ(xk) is not practical, quasi-
Newton methods are viable alternatives because they exhibit
superlinear convergence rates while maintaining memory and
computational efficiency.

Perhaps the most well-known among all of the quasi-
Newton methods is the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update [15], [19], given by

Bk+1 = Bk −
1

sTkBksk
Bksks

T
kBk +

1

yTk sk
yky

T
k , (10)

where sk = xk+1 − xk and yk = ∇Φ(xk+1)−∇Φ(xk). The
matrices are defined recursively with the initial B0 taken to
be a B0 = γI , where the scalar γ > 0. In practice, only the
m most-recently computed pairs {(sk, yk)} are stored, where
m � n, typically m ≤ 100 for very large problems. This
approach is often referred to as limited-memory BFGS, or L-
BFGS. Because these updates are low-rank, the matrix Bk+1

can be compactly represented as Bk+1 = B0 + ΨkMkΨT
k ,

for some Ψk ∈ <n×2(k+1) and Mk ∈ <2(k+1)×2(k+1). In
particular,

Ψk =
[
B0Sk Yk

]
and Mk = −

[
STk B0Sk Lk
LTk −Dk

]−1
,

where Sk = [ s0 s1 s2 · · · sk ] ∈ <n×(k+1), and Yk =
[ y0 y1 y2 · · · yk ] ∈ <n×(k+1), and Lk is the strictly
lower triangular part and Dk is the diagonal part of the matrix



STk Yk ∈ <(k+1)×(k+1), i.e., STk Yk = Lk + Dk + Uk, where
Uk is a strictly upper triangular matrix (see [20] for details).

Given the compact representation of Bk+1, then both the
line search problem (5) and the trust-region subproblem (8)
can be efficiently solved when the L-BFGS matrix is used
as the Hessian approximation. In particular, the solution to
(4) is given by p∗k = − 1

γ

[
I −Ψk(γM−1k + ΨT

k Ψk)−1ΨT
k

]
gk,

using the well-known Sherman-Morrison-Woodbury formula.
Similarly, the solution to the trust-region subproblem is ob-
tained efficiently. First, the QR factorization of Ψk = QR is
formed. Then the eigendecomposition of the 2(k+1)×2(k+1)
matrix RMkR

T = V ΛV T is computed so that the partial
eigendecomposition of Bk+1 = γI+QV ΛV TQT is obtained.
This allows for a change in variables in (8) that yields a closed
form expression for the solution p∗k (see Algorithm 1 in [21]
for details).

IV. NUMERICAL EXPERIMENTS

In this section we compare the line search L-BFGS opti-
mization method with our proposed Trust-Region Minimiza-
tion Algorithm for Training Responses (TRMinATR). The goal
of the experiment is to perform the optimization necessary
for neural network training. Both methods are implemented to
train the LeNet-5 architecture with the purpose of image classi-
fication of the MNIST dataset. All simulations were performed
on an AWS EC2 p2.xlarge instance with 1 Tesla K80 GPU,
64 GiB memory, and 4 Intel 2.7 GHz Broadwell processors.
For the scalars c1 and c2 in the Wolfe line search condition,
we used the typical values of c1 = 10−4 and c2 = 0.9 [15].
All codes are implemented in TensorFlow and available at
https://github.com/root-master/lbfgs-tr.

A. LeNet-5

The convolutional neural network known as LeNet-5 was
mainly used for character recognition tasks such as reading zip
codes and digits [9]. The architecture is given in Table I. The
convolutional layers extract features from the input image and
preserve spatial relationships between pixels using the learned
information.

B. MNIST Dataset

The convolutional neural network was trained and tested
using the MNIST Dataset [22]. The dataset consists of 70,000
examples of handwritten digits with 60,000 examples used as
a training set and 10,000 examples used as a test set. The
digits range from 0 - 9 and their sizes have been normalized
to 28x28 pixel images. The images include labels describing
their intended classification.

C. Results

The line search algorithm and TRMinATR perform compa-
rably in terms of loss and accuracy. This remains consistent
with different choices of the memory parameter m (see Fig.
4). The more interesting comparison is that of the training
accuracy and the test accuracy, the two metrics follow each
other closely. This is unlike the typical results using com-
mon gradient descent based optimization. Typically the test

TABLE I
STRUCTURE OF THE LENET5 CONVOLUTIONAL NEURAL NETWORK

TRAINED ON THE MNIST DATASET.

LeNet-5
Layer NVIDIAConnectivity

0: input 28× 28 image
1 convolutional, 20 5× 5 filters (stride=1),

total 11520 neurons, followed by ReLU
2 max pool, 2× 2 window (stride=2),

total 2280 neurons
3 convolutional, 50 5× 5 filters (stride=1),

total 3200 neurons, followed by ReLU
4 max pool, 2× 2 window (stride=2),

total 800 neurons
5 fully connected, 500 neurons without dropout

followed by ReLU
6: output fully connected, 10 neurons without dropout

followed by softmax
total of 431080 trainable parameters
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Fig 3. We compare the loop time for 200 iterations of the line-search and
trust-region quasi-Newton algorithms for different batch sizes. As the number
of multi batches increase, the size of each batch decreases. Both methods
were tested using different values of the memory parameter m.

accuracy is delayed in achieving the same results as the train
accuracy. This would suggest that the model has a better
chance of being generalized beyond the training data.

We also report that the TRMinATR significantly improves
on the computational efficiency of the line-search method
when using larger batch sizes. This could be the result of the
line-search method’s need to satisfy certain wolfe conditions
at each iteration. There is also an associated computational
cost when verifying that the conditions for sufficient decrease
are being met. When the batch size decreases, the trust-region
method continues to outperform the line-search method. This
is especially true when less information is used in the Hessian
approximation (see Fig. 3).

V. CONCLUSIONS

In this paper we present the limited memory quasi-Newton
method known as L-BFGS as an alternative to the gradi-
ent descent methods used to train deep neural networks. In
particular we develop the algorithm known as TRMinATR
which minimizes the cost function of the neural network
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Fig 4. The behavior of the loss and accuracy for the training and test sets. (a) Training and testing using the full training set as a batch size. (b) Training
using batch sizes that are half of the size of the full set. Results are shown using typical memory settings (m = 15 and m = 20) in an L-BFGS setting.

by efficiently solving a sequence of trust-region subproblems
using low-rank Hessian approximations. The benefit of the
method is that the algorithm is free from the constraints of
data specific parameters seen in traditionally used methods.
TRMinATR also improves on the computational efficiency of
a similar line search implementation. In the future we hope to
apply TRMinATR to deep learning architectures designed to
complete tasks in applications such as cancer detection [23]
or speech recognition [24].
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