
UNIVERSITY OF CALIFORNIA, MERCED

Learning Representations in
Reinforcement Learning

A dissertation submitted in partial satisfaction of the requirements for the degree
Doctor of Philosophy

in

Electrical Engineering and Computer Science

by

Jacob Rafati Heravi

Committee in charge:

Professor David C. Noelle, Chair
Professor Marcelo Kallmann
Professor Roummel F. Marcia
Professor Shawn Newsam
Professor Jeffrey Yoshimi

2019

Copyright Notice

Portion of Chapter 3 c©2015 Cognitive Science Society

• Jacob Rafati, and David C. Noelle. (2015). Lateral Inhibition Overcomes Lim-
its of Temporal Difference Learning, In proceedings of 37th Annual Meeting of
Cognitive Science Society, Pasadena, CA.

Portion of Chapter 3 c©2017 Cognitive Computational Neuroscience

• Jacob Rafati, and David C. Noelle. (2017). Sparse Coding of Learned State
Representations in Reinforcement Learning. 1st Cognitive Computational Neu-
roscience Conference, NYC, NY.

Portion of Chapter 4 c©2019 Association for the Advancement of Artificial Intelligence

• Jacob Rafati, and David C. Noelle. (2019). Learning Representations in Model-
Free Hierarchical Reinforcement Learning. In proceedings of 33rd AAAI Con-
ference on Artificial Intelligence, Honolulu, HI.

Portion of Chapter 5 c©2018 The European Association for Signal Processing

• Jacob Rafati, Omar DeGuchy, and Roummel F. Marcia (2018). Trust-Region
Minimization Algorithms for Training Responses (TRMinATR): The Rise of
Machine Learning Techniques. In proceedings of 26th European Signal Process-
ing Conference (EUSIPCO 2018), Rome, Italy.

Portion of Chapter 5 c©2018 Institute of Electrical and Electronics Engineers (IEEE)

• Jacob Rafati, and Roummel F. Marcia. (2018). Improving L-BFGS Initializa-
tion For Trust-Region Methods In Deep Learning. In proceedings of 17th IEEE
International Conference on Machine Learning and Applications, Orlando, FL.

All Other Chapters c©2019 Jacob Rafati Heravi
All Rights Reserved.

The Dissertation of Jacob Rafati Heravi is approved, and it is acceptable in quality
and form for publication on microfilm and electronically:

Marcelo Kallmann

Roummel F. Marcia

Shawn Newsam

Jeffrey Yoshimi

David C. Noelle, Chair

University of California, Merced

2019

iii

Dedication

To my mother. She has worked so hard, and has supported me throughout my entire
life all alone. She has tolerated our 8,000 mile distance for over 5 years due to the
current travel bans. I hope this accomplishment brings joy to her life.

To Katie Williams, for all the emotional, and spiritual support, and for all love.

iv

Contents

List of Symbols ix

List of Figures xi

List of Tables xvii

List of Algorithms xviii

Preface xix

Acknowledgment xx

Curriculum Vita xxi

Abstract xxiii

1 Introduction 1
1.1 Motivation . 1
1.2 Dissertation Outline, and Objectives 4

2 Reinforcement Learning 6
2.1 Reinforcement Learning Problem . 6

2.1.1 Agent and Environment interaction 6
2.1.2 Policy Function . 7
2.1.3 Objective in RL . 7

2.2 Markov Decision Processes . 7
2.2.1 Formal Definition of MDP . 7
2.2.2 Value Function. 8
2.2.3 Bellman Equations . 9
2.2.4 Optimal Value Function . 10
2.2.5 Value iteration algorithm . 10

2.3 Reinforcement Learning algorithms 11
2.3.1 Value-based vs Policy-based Methods 12
2.3.2 Bootstrapping vs Sampling . 13
2.3.3 Model-Free vs Model-Based RL 13

v

2.4 Temporal Difference Learning . 14
2.4.1 SARSA . 14
2.4.2 Q-Learning . 15

2.5 Generalization in Reinforcement Learning 15
2.5.1 Feed-forward Neural Networks 16
2.5.2 Loss Function as Expectation of TD Error 17

2.6 Empirical Risk Minimization in Deep RL 18

3 Learning Sparse Representations in Reinforcement Learning 19
3.1 Introduction . 19
3.2 Background . 21
3.3 Methods for Learning Sparse Representations 23

3.3.1 Lateral inhibition . 23
3.3.2 k-Winners-Take-All mechanism 23
3.3.3 Feedforward kWTA neural network 24

3.4 Numerical Simulations . 26
3.4.1 Experiment design . 26
3.4.2 The Puddle-world task . 27
3.4.3 The Mountain-car task . 29
3.4.4 The Acrobot task . 31

3.5 Results and Discussions . 33
3.5.1 The puddle-world task . 33
3.5.2 The mountain-car task . 35
3.5.3 The Acrobot task . 35

3.6 Future Work . 38
3.7 Conclusions . 38

4 Learning Representations in Model-Free Hierarchical Reinforcement
Learning 39
4.1 Introduction . 40
4.2 Failure of RL in Tasks with Sparse Feedback 42
4.3 Hierarchical Reinforcement Learning 43

4.3.1 Subgoals vs. Options . 44
4.3.2 Spatiotemporal Hierarchies . 45
4.3.3 Hierarchical Reinforcement Learning Subproblems 45

4.4 Meta-controller/Controller Framework 47
4.5 Intrinsic Motivation Learning . 50
4.6 Experiment on Intrinsic Motivation Learning 52

4.6.1 Training the State-Goal Value Function 53
4.6.2 Intrinsic Motivation Performance Results 54
4.6.3 Reusing Learned Skills . 55

4.7 Unsupervised Subgoal Discovery . 56
4.7.1 Anomaly Detection . 60
4.7.2 K-Means Clustering . 61

vi

4.7.3 Mathematical Interpretation 61
4.8 A Unified Model-Free HRL Framework 62
4.9 Experiments on Unified HRL Framework 63

4.9.1 4-Room Task with Key and Lock 63
4.9.2 Montezuma’s Revenge . 70

4.10 Neural Correlates of Model-Free HRL 73
4.11 Future Work . 74

4.11.1 Learning Representations in Model-based HRL 74
4.11.2 Solving Montezuma’s Revenge 75

4.12 Conclusions . 76

5 Trust-Region Methods for Empirical Risk Minimization 77
5.1 Introduction . 78

5.1.1 Existing Methods . 78
5.1.2 Motivation and Objectives . 79

5.2 Background . 81
5.2.1 Unconstrained Optimization Problem 81
5.2.2 Recognizing A Local Minimum 82
5.2.3 Main Algorithms . 82

5.3 Optimization Strategies . 82
5.3.1 Line Search Method . 83
5.3.2 Trust-Region Qausi-Newton Method 84

5.4 Quasi-Newton Optimization Methods 85
5.4.1 The BFGS Update . 86
5.4.2 The SR1 Update . 86
5.4.3 Compact Representations . 86
5.4.4 Limited-Memory quasi-Newton methods 87
5.4.5 Trust-Region Subproblem Solution 87

5.5 Experiment on L-BFGS Line Search vs. Trust Region 88
5.5.1 LeNet-5 Convolutional Neural Network Architecture 88
5.5.2 MNIST Image Classification Task 88
5.5.3 Results . 89

5.6 Proposed Quasi-Newton Matrix Initializations 90
5.6.1 Initialization Method I . 90
5.6.2 Initialization Method II . 92
5.6.3 Initialization Method III . 93

5.7 Experiments on L-BFGS Initialization 94
5.7.1 Computing Gradients . 94
5.7.2 Multi-batch Sampling . 94
5.7.3 Computing yk . 95
5.7.4 Other Parameters . 95
5.7.5 Results and Discussions . 95

5.8 Future Work . 98

vii

5.9 Conclusions . 98

6 Quasi-Newton Optimization in Deep Reinforcement Learning 99
6.1 Introduction . 100
6.2 Optimization Problems in RL . 102
6.3 Line-search L-BFGS Optimization . 103

6.3.1 Line Search Method . 103
6.3.2 Quasi-Newton Optimization Methods 103
6.3.3 The BFGS Quasi-Newton Update 104
6.3.4 Limited-Memory BFGS . 104

6.4 Deep L-BFGS Q Learning Method 105
6.5 Convergence Analysis . 107

6.5.1 Convergence of empirical risk 107
6.5.2 Value Optimality . 108
6.5.3 Computation time . 109

6.6 Experiments on ATARI 2600 Games 110
6.7 Results and Discussions . 112
6.8 Future Work . 115
6.9 Conclusions . 116

7 Concluding Remarks 117
7.1 Summary of Contributions . 118
7.2 Future Work . 121

Bibliography 122

viii

List of Symbols

α Learning rate

D Agent’s experience memory

D1 Controller’s experience memory in HRL

D2 Meta-controller’s experience memory in HRL

ε Exploration rate in ε-greedy method

G Subgoals space

γ Discount factor

L Objective function

A Actions space

S States space

π Policy function

s Search step (sk = wk+1 − wk)

r̃ Intrinsic reward

W Parameter of the meta-controller value function

y Differnce between consequtive gradients (yk = ∇L(wk+1)−∇L(wk))

a Agent’s current selected action

At A random variable for the agent’s action at time t

at Agent’s action at time t

B Quasi-newton matrix

e Agent’s experience tuple, e = (s, a, s′, r′), AKA agent’s trajectory

G Return, accumulated future rewards

ix

g Gradient (in chapters 5, and 6)

g Subgoal (in chapter 4)

H Hessian matrix

J A minibatch of data

pk Search direction in kth iteration

Q State-action value function

q State-action value function

Q(s, a;w) A parameterized State-action value function

Qπ State-action value function, following policy π

qπ State-action value function, following policy π

r Reward at next time step

r(s, a) Reward function

Rt A random variable for the environment’s reward at time t

s Agent’s state at current time

s′ Agent’s state at next time step

St A random variable for the agent’s state at time t

st Agent’s state at time t

T Final time step

w Parameter of the objective function, variable of the optimization problem

x

List of Figures

2.1 The agent/environment interaction in reinforcement learning. Adopted
from (Sutton and Barto, 1998) . 6

2.2 Two dimensions of RL algorithms. At the extremes of these dimensions
are (a) dynamic programming, (b) exhaustive search, (c) one-step TD
learning and (d) pure Monte Carlo approaches. Adopted from (Arulku-
maran et al., 2017). (e) Relationships among direct learning (model-
free methods), and planning (model-based methods). Adopted from
(Sutton and Barto, 2017). 12

3.1 The kWTA neural network architecture: a backpropagation network
with a single layer equipped with the k-Winner-Take-All mechanism
(from Algorithm 5). The kWTA bias is subtracted from the hidden
units net input that causes polarized activity which supports the sparse
conjunctive representation. Only 10% of the neurons in the hidden
layer have high activation. Compare the population of red (winner)
neurons to the orange (loser) ones. 25

3.2 The neural network architectures used as the function approximator
for state action values q(s, a;w). (a) Linear network. (b) Regular
backpropagation neural network. (c) kWTA network. 27

3.3 The agent in puddle-world task attempts to reach the goal location
(fixed in the Northeast corner) in the least time steps by avoiding the
puddle. The agent moves a distance of 0.05 either North, South, East,
or West on each time step. Entering a puddle produces a reward of
(−400×d), where d is the distance of the current location to the edge of
the puddle. This value was −1 for most of the environment, but it had
a higher value, 0, at the goal location in the Northeast corner. Finally,
the agent receives a reward signal of −2 if it had just attempted to leave
the square environment. This pattern of reinforcement was selected to
parallel that previously used in Sutton (1996). 29

3.4 The Mountain-car task. The goal is to drive an underpowered car up
a steep hill. The agent received -1 reward for each time step until it
reached the goal, at which point it received 0 reward. 30

xi

3.5 The Acrobot task. The goal is to swing the tip (i.e. “feet”) above the
horizontal by the length of the lower “leg” link. The agent receives -1
reward until it reaches to goal, at which point it receives 0 reward. . . 31

3.6 The performance of various learned value function approximators may
be compared in terms of their success at learning the true value func-
tion, the resulting action selection policy, and the amount of experience
in the environment needed to learn. The approximate of the state val-
ues, expressed as maxa Q(s, a) for each state, s is given. (a) Values
of states for the Linear network. (b) Values of states for the Regular
network. (c) Values of state for kWTA network. The actions selected
at a grid of locations is shown in the middle row. (d) Policy of states
derived from Linear network. (e) Policy of states derived from Reg-
ular network. (f) Policy of states derived from kWTA network. The
learning curve, showing the TD Error over learning episodes, is shown
on the bottom. (g) Average TD error for training Linear network. (h)
Average TD error for training Regular network. (i) Average TD error
for training kWTA network. 34

3.7 Averaged over 20 simulations of each network type, these columns dis-
play the mean squared deviation of accumulated reward from that of
optimal performance. Error bars show one standard error of the mean. 35

3.8 The performance of various networks trained to perform the Mountain-
car task. The top row contains the approximate value of states after
training (maxaQ(s, a)). (a) Values approximated from Linear network.
(b) Values approximated from Regular BP network. (c) Values approx-
imated from kWTA network. The middle row shows two statistics over
training episodes: the top subplot shows the average value of the TD
Error, δ, and the bottom subplot shows the number of time steps dur-
ing training episodes. Average of TD Error and total steps in training
for (d) Linear (e) Regular (f) kWTA is given. The last row reports
the testing performance, which was measured after each epoch of 1000
training episodes. During the test episodes the weight parameters were
frozen and no exploration was allowed. Average of TD Error and the
total steps for (g) Linear (h) Regular (i) kWTA are given. 36

3.9 The performance of various networks trained to solve the Acrobot con-
trol task. The top row results correspond to training performance of
the SARSA Algorithm 1. The average TD Error (top subplot) and the
total number of steps (bottom subplot) for each episode of learning are
given for (a) Linear (b) Regular and (c) kWTA neural networks are
given. The bottom row are the performance results for the testing that
was measured after every epoch of 1000 training episodes in which the
weight parameters were frozen and no exploration was allowed. Aver-
age of TD error and total steps for (d) Linear (e) Regular (f) kWTA
are given. 37

xii

4.1 The rooms task with a key and a car. The agent should explore the
rooms to first find the key and then find the car. The key and the car
can be in any of the 4 rooms in any arbitrary locations. The agent
moves either A = {North, South, East,West} on each time step. The
agent receives r = +10 reward for getting the key and r = +100 if it
reaches the car with the key. The blue objects on the map — doorways,
key, and car — are useful subgoals. 44

4.2 (a) The state space S and the state of the agent st. The intrinsic goal
can be either reaching from st to a region or set of states, g1 ⊂ S, or to
a single state g2 ∈ S. (b) An option is a transition from a set of states
to another set of states. 45

4.3 The rooms task requires the agent to be able to navigate and reach a
certain subgoal, g, from its current state. (a) Moving to a doorway.
(b) Moving to the key. (c) Moving to the car. Learning how to space
the state space through intrinsic motivation can facilitate learning. . . 46

4.4 The Meta-Controller/Controller framework for temporal abstraction.
The agent produces actions and receives sensory observations. Sepa-
rate networks are used inside the meta-controller and controller. The
meta-controller looks at the raw states and produces a policy over
goals by estimating the value function Q(st, gt) (by maximizing ex-
pected future extrinsic reward). The controller takes states as input,
along with the current goal, (st, gt), and produces a policy over actions
by estimating the value function q(st, gt, at) to accomplish the goal gt
(by maximizing expected future intrinsic reward). The internal critic
checks if a goal is reached and provides an appropriate intrinsic reward
to the controller. The controller terminates either when the episode
ends or when gt is accomplished. The meta-controller then chooses a
new subgoal, and the process repeats. This architecture is adapted
from Kulkarni et al. (2016). 48

4.5 Grid-world task with a dynamic goal. At beginning of each episode
an oracle chooses an arbitrary goal, g ∈ S. The agent is initialized
in a random location. On each time step, the agent has four action
choices, A = {North, South, East, West}. The agent receives r̃ = +1
reward for successful episodes, reaching the goal, g. Bumping into the
wall produces a reward of r̃ = −2. There is no external reward or
punishment from the environment for exploring the space. 51

xiii

4.6 The state-goal neural network architecture used to approximate the
value function for the controller, q(s, g, a;w). The function takes the
state, st, and the goal, gt, as inputs. The first layer produces the Gaus-
sian representation separately for st and gt. The state representation is
connected fully to the hidden layer, and the k-Winners-Take-All mech-
anism produces a sparse representation for st. The goal representation
is connected only to the corresponding row of units. We assume that
an oracle in the meta-controller transform the state in rooms task to a
proper state for the state-goal netwrok that is trained on the navigation
in the gridworld (single room) task. 53

4.7 In general, the agent received r = +10 reward for moving to the key
and r = +100 if it then moved to the car. On each time step, the agent
had four action choices A = {North, South, East, West}. Bumping
to the wall produced a reward of r = −2. There was no other reward
or punishment from the environment for exploring the space. (a) Key
task: agent needs to reach to the location of key. (b) Key-Car task:
agent should first reach to the key and then to the car. 56

4.8 The test results for the task of moving to the key. Top: The key is
located in a random location. Bottom: The key is randomly located in
the neighborhood of the initial state. The total scores are the average
of the total reward scores from all possible initial states. The success
rate is the percentage of the test episodes in which the agent moves to
the key. 57

4.9 The test results for key-car task. Top: hard placement — the key and
the car are placed in random locations. Bottom: easy placement — the
key is located at (0,0) and the car is located at (1,1). The total scores
are the average of the total scores form all possible initial states. The
success rate is the percentage of the test episodes in which the agent
successfully moves to the key and then to the car. 58

4.10 Reusing the navigation skill to solve the rooms task. At each time
step, an oracle selected a subgoal for the agent (red locations). The
agent with the pretrained navigation skill successfully accomplishes all
of the subgoals assigned by the oracle. (a) The starting configuration.
(b) Subgoal: doorway between room 1 and 2. (c) Subgoal: moving to
the key. (d) Subgoal: doorway between room 2 and 3. (e) Subgoal:
doorway between room 3 and 4. (f) Subgoal: moving to the car. . . . 59

4.11 (a) The information flow in the unified Model-Free Hierarchical Re-
inforcement Learning Framework. (b) Temporal abstraction in the
meta-controller/controller framework. 63

xiv

4.12 (a) The 4-room task with a key and a lock. (b) The results of the
unsupervised subgoal discovery algorithm with anomalies marked with
black Xs and centroids with colored ones. The number of clusters in K-
means algorithm was set to K = 4. (c) The result of the unsupervised
subgoal discovery for K = 6. (d) The results of the unsupervised
subgoal discovery for K = 8. 66

4.13 (a) Reward over an episode, with anomalous points corresponding to
the key (r = +10) and the lock (r = +40). (b) The average success of
the controller in reaching subgoals over 200 consecutive episodes. (c)
The average episode return. (d) The average success rate for solving
the 4-room task. 67

4.14 Integrated meta-controller and controller network architecture. 68
4.15 The rate of coverage in the rooms task. Plotted is the number of visited

states as a fraction of the total size of the state space. 69
4.16 (a) The CNN architecture for the controller’s value function. (b) The

CNN architecture for the meta-controller’s value function. 71
4.17 (a) The first screen of the Montezuma’s Revenge game. (b) The results

of the Canny edge detection algorithm on a single image of the game.
(c) The results of the unsupervised subgoal discovery algorithm during
the intrinsic motivation learning of the controller in the first room of the
Montezuma’s Revenge game. Blue circles are the anomalous subgoals
and the red ones are the centroids of clusters. (d) The results of the
unsupervised subgoal discovery for a random walk. (e) The success of
the controller in reaching subgoals. (f) The average game score. . . . 72

5.1 An illustration of trust-region methods. For indefinite matrices, the
Newton step (in red) leads to a saddle point. The global minimizer
(in blue) is characterized by the conditions in Eq. (5.9) with B + σ∗I
positive semidefinite. In contrast, local minimizers (in green) satisfy
Eq. (5.9) with B + σ∗I not positive semidefinite. 84

5.2 A LeNet deep learning network inspired by the architecture found in
LeCun and Others (2015) . The neural network is used in the classifi-
cation of the MNIST dataset of hand written digits. The convolutional
neural network (CNN) uses convolutions followed by pooling layers for
feature extraction. The final layer transforms the information into the
required probability distribution. 88

5.3 We compare the loop time for 200 iterations of the line-search and
trust-region quasi-Newton algorithms for different batch sizes. As the
number of multi batches increase, the size of each batch decreases.
Both methods were tested using different values of the memory pa-
rameter m. 90

xv

5.4 Loss and accuracy for the training and test sets, using L-BFGS line-
search, and L-BFGS trust-region methods. (a) & (b) m = 15, and
full-batch (all data is used to compute the gradients at each iteration).
(c) & (d) m = 15, and Full-batch. (e) & (f) m = 15, and half-batch.
(g) & (h) m = 20, and half-batch. 91

5.5 A trust-region algorithm with different L-BFGS initialization methods
is used for training LeNet-5 CNN to learn the task of classification
of the MNIST digits set. The performance of learning is depicted for
different sample batch sizes S and different memory storage m = 10
and m = 20. N is the size of data and |S| is the size of the sample
batch. (a) Train and test minimum loss for m = 10. (b) Train and
test minimum loss for m = 20. (c) Train and test maximum accuracy
for m = 10. (d) Train and test maximum accuracy for m = 20. (e)
Training time for m = 10. (f) Training time for m = 20. 97

6.1 (a) Test scores (b) Total training time for ATARI games. 113
6.2 (a) – (f) Test scores and (g) – (l) training loss for six ATARI games —

Beam Rider, Breakout, Enduro, Q*bert, Seaquest, and Space Invaders.
The results are form simulations with batch size b = 2048 and the L-
BFGS memory size m = 40. 113

xvi

List of Tables

5.1 LeNet-5 CNN architecture (Lecun et al., 1998). 89
5.2 Summary of the proposed L-BFGS initialization Methods 92

6.1 Best Game Scores for ATARI 2600 Games with different learning meth-
ods. Beam Rider (BR), Breakout (BO), Enduro (EO), Q*bert (Q*B),
Seaquest (SQ), and Space Invaders (SI) 114

6.2 Average training time for ATARI 2600 games with different learning
methods (in hours). Beam Rider (BR), Breakout (BO), Enduro (EO),
Q*bert (Q*B), Seaquest (SQ), and Space Invaders (SI) 115

xvii

List of Algorithms

1 SARSA: On-Policy TD Learning . 15
2 Q-Learning: Off-Policy TD Learning 16
3 The ε-greedy policy function . 16
4 Q-Learning with Experience Replay 18
5 The k-Winners-Take-All Function . 24
6 TD SARSA learning method using a neural network 28
7 Meta-Controller and Controller Learning 50
8 Intrinsic Motivation Learning . 52
9 Forward pass, and backpropagation for network in Figure 4.6 54
10 Unsupervised Subgoal Discovery Algorithm 60
11 Unified Model-Free HRL Algorithm 64
12 Line Search Method pseudo-code. 83
13 Trust region method pseudo-code. 85
14 L-BFGS two-loop recursion. 105
15 Line search Multi-batch L-BFGS Optimization for Deep Q Learning. 106

xviii

Preface

The main contribution of this dissertation is introducing different methods for learn-
ing representations in the model-free Reinforcement Learning (RL) framework, and
providing scalable numerical methods for solving large-scale RL tasks.

This dissertation is written to be accessible to researchers familiar with machine
learning and Markov Decision Processes (MDP). However, a brief introduction to RL,
MDP, and effective algorithms for learning is provided in chapter 2. Most chapters of
this dissertation are self-contained. Methods for learning representations in chapters
3 and 4 are inspired by the computational cognitive neuroscience models of the brain.
Chapter 3 investigates methods for learning sparse conjunctive representations in RL
inspired by the lateral inhibition in the cortex. Chapter 4 studies methods for learn-
ing representations in the model-free hierarchical reinforcement learning framework,
inspired by the hierarchical organization of behavior in the prefrontal cortex, and
intrinsic motivation learning. Chapter 5 provides methods based on quasi-Newton
optimization and trust-region strategy to solve empirical risk minimization problems.
These optimization problems arise in many machine learning applications (including
RL) and also other engineering disciplines. In this chapter, applications on image
classification in the deep learning framework are considered. Chapter 6 introduces
efficient numerical optimization methods in RL, and their specific implementation in
deep reinforcement learning framework. Chapter 7 provides a summary of contribu-
tions from this dissertation.

We used games, such as navigation in a gridworld, or playing ATARI games,
for the numerical experiments throughout the dissertation. Games are attractive
environments for testing the efficiency of the AI and RL methods. But it is important
to note that solving games is not a main contribution in this dissertation. The
proposed methods are general and can be applied to various large-scale tasks including
autonomous driving, games, and robotics.

The code for numerical simulations is available at http://rafati.net. Please
feel free to send your questions or feedback to my email at yrafati@gmail.com.

If you use simulation code, or published materials, please cite the corresponding
paper. (See my Publications in the Curriculum Vita.) If you use any unpublished
materials, please cite the dissertation using the following citation:

• Rafati, Jacob. (2019). Learning Representations in Reinforcement Learning.
Ph.D. Dissertation. University of California, Merced.

xix

http://rafati.net
mailto:yrafati@gmail.com

Acknowledgment

Over the past six years I have received support and encouragement from a great
number of individuals at the University of California, Merced.

Dr. David C. Noelle, my Ph.D. advisor, has been a mentor, colleague, and friend.
I would like to thank him for his unwavering support and encouragement over the
years. His guidance has made this a thoughtful and rewarding journey. He showed
me the beautiful world of artificial intelligence, computational cognitive neuroscience,
and reinforcement learning. He has introduced the open problems of the RL field and
helped me to gain knowledge and courage in pursuing the most exciting research. He
has supported me with my next career goals.

I would like to thank Dr. Roummel F. Marcia for all his amazing support. I
have enjoyed every moment of our collaboration. I have learned a huge deal of large-
scale optimization methods and the open problems of the field from him. He has
encouraged me to pursue my curiosity and supported me in all means. I would like
to thank Dr. Jeffrey Yoshimi, for his intellectual support. He has helped me to
understand the philosophical importance of my research work. I would like to thank
Dr. Marcelo Kallmann and Dr. Shawn Newsam for their great support.

I am thankful for helpful feedback from the members of the computational cog-
nitive neuroscience laboratory. I would like to thank the staff of the School of En-
gineering, Tomiko Hale, Tamika Hankston, the staff of the Graduate Division, the
Graduate Dean, Dr. Marjorie Zatz, and the Associate Dean, Dr. Chris Kello.

I acknowledge that the Graduate Dean’s Dissertation Fellowship has supported
the preparation of this dissertation. Some of my research collaboration with Dr.
Roummel F. Marcia is supported by NSF Grants CMMI 1333326, and IIS 1741490.
I used MERCED clusters for some of the numerical computations, supported by the
NSF Grant No. ACI-1429783. I also acknowledge generous conference travel funds,
and the EECS Bobcat Fellowships from the School of Engineering.

I would like to thank Omar DeGuchy for presenting our paper in EUSIPCO 2018,
Dr. Johannes Brust for helpful feedback, and Dr. Harish Bhat, whose course on the
mathematics of deep learning helped facilitate my research. I would like to thank
Sarvani Chadalapaka for IT supports. Finally, I would like to thank Katie Williams
for proofreading my manuscripts.

xx

Curriculum Vita

Education
• University of California, Merced. Merced, CA, USA. (2013 – 2019).

Ph.D. in Electrical Engineering and Computer Sciences.

• Sharif University of Technology. Tehran, Iran. (2008 – 2010).
M.Sc. in Mechanical Engineering.

• Sharif University of Technology. Tehran, Iran. (2003 – 2007).
B.Sc. in Mechanical Engineering.

Publications

Publications from Ph.D. Dissertation
14. Jacob Rafati, and David C. Noelle. (2019). Unsupervised Subgoal Discovery

Method for Learning Hierarchical Representations. 7th International Confer-
ence on Learning Representations, ICLR 2019 Workshop on “Structure Priors
in Reinforcement Learning”, New Orleans, Louisiana.

13. Jacob Rafati, and David C. Noelle. (2019). Learning Representations in
Model-Free Hierarchical Reinforcement Learning. 33rd AAAI Conference on
Artificial Intelligence, Honolulu, HI.

12. Jacob Rafati, and David C. Noelle. (2019). Unsupervised Methods For Sub-
goal Discovery During Intrinsic Motivation in Model-Free Hierarchical Rein-
forcement Learning. AAAI (2019) workshop on Knowledge Extraction From
Games.

11. Jacob Rafati, and Roummel F. Marcia. (2019). Deep Reinforcement Learning
via L-BFGS Optimization. Preprint at https://arxiv.org/abs/1811.02693.

xxi

https://arxiv.org/abs/1811.02693

10. Jacob Rafati, and David C. Noelle (2019). Learning Representations in Model-
Free Hierarchical Reinforcement Learning. Preprint at https://arxiv.org/
abs/1810.10096.

9. Jacob Rafati, and Roummel F. Marcia. (2018). Improving L-BFGS Initial-
ization For Trust-Region Methods In Deep Learning. 17th IEEE International
Conference on Machine Learning and Applications, Orlando, FL.

8. Jacob Rafati, Omar DeGuchy, and Roummel F. Marcia (2018). Trust-Region
Minimization Algorithms for Training Responses (TRMinATR): The Rise of
Machine Learning Techniques. 26th European Signal Processing Conference
(EUSIPCO 2018), Rome, Italy.

7. Jacob Rafati, and David C. Noelle. (2017). Sparse Coding of Learned State
Representations in Reinforcement Learning. 1st Cognitive Computational Neu-
roscience Conference, NYC, NY.

6. Jacob Rafati, and David C. Noelle. (2015). Lateral Inhibition Overcomes
Limits of Temporal Difference Learning, 37th Annual Meeting of Cognitive Sci-
ence Society, Pasadena, CA.

Publications from M.Sc. Thesis

5. Jacob Rafati, Mohsen Asghari and Sachin Goyal. (2014) Effects of DNA
Encapsulation on Buckling Instability of Carbon Nanotube based on Nonlocal
Elasticity Theory. Proceedings of the ASME 2014 International Design Engi-
neering Technical Conferences & Computers and Information in Engineering
Conference, Buffalo, NY, USA.

4. Mohsen Asghari, Jacob Rafati, and Reza Naghdabadi. (2013). Torsional
Instability of Carbon Nano-Peapods based on the Nonlocal Elastic Shell Theory.
Physica E: Low-dimensional Systems and Nanostructures, 47: p. 316-323.

3. Mohsen Asghari, Reza Naghdabadi, and Jacob Rafati. (2011). Small Scale
Effects on the Stability of Carbon Nano-Peapods under Radial Pressure, Physica
E: Low-dimensional Systems and Nanostructures, 43(5): pp. 1050-1055.

2. Mohsen Asghari, and Jacob Rafati. (2010). Variational Principles for the Sta-
bility Analysis of Multi-Walled Carbon Nanotubes Based on a Nonlocal Elastic
Shell Model, ASME 2010 10th Biennial Conference on Engineering Systems
Design and Analysis (ESDA2010).

1. Jacob Rafati. (2010). Stability Analysis of hybrid nanotubes based on the
nonlocal continuum theories. M.Sc. Thesis. Sharif University of Technology.

xxii

https://arxiv.org/abs/1810.10096
https://arxiv.org/abs/1810.10096

Abstract
Learning Representations in Reinforcement Learning
A Ph.D. dissertation by: Jacob Rafati
Electrical Engineering and Computer Science
University of California, Merced. 2019.
Ph.D. advisor: Professor David C. Noelle

Reinforcement Learning (RL) algorithms allow artificial agents to improve their action
selection policy to increase rewarding experiences in their environments. Temporal
Difference (TD) learning algorithm, a model-free RL method, attempts to find an op-
timal policy through learning the values of agent’s actions at any state by computing
the expected future rewards without having access to a model of the environment. TD
algorithms have been very successful on a broad range of control tasks, but learning
can become intractably slow as the state space grows. This has motivated methods
for using parameterized function approximation for the value function and develop-
ing methods for learning internal representations of the agent’s state, to effectively
reduce the size of state space and restructure state representations in order to sup-
port generalization. This dissertation investigates biologically inspired techniques for
learning useful state representations in RL, as well as optimization methods for im-
proving learning. There are three parts to this investigation. First, failures of deep
RL algorithms to solve some relatively simple control problems are explored. Taking
inspiration from the sparse codes produced by lateral inhibition in the brain, this
dissertation offers a method for learning sparse state representations. Second, the
challenges of RL in efficient exploration of environments with sparse delayed reward
feedback, as well as the scalability issues in large-scale applications are addressed.
The hierarchical structure of motor control in the brain prompts the consideration
of approaches to learning action selection policies at multiple levels of temporal ab-
straction. That is learning to select subgoals separately from action selection policies
that achieve those subgoals. This dissertation offers a novel model-free Hierarchi-
cal Reinforcement Learning framework, including approaches to automatic subgoal
discovery based on unsupervised learning over memories of past experiences. Third,
more complex optimization methods than those typically used in deep learning, and
deep RL are explored, focusing on improving learning while avoiding the need to fine
tune many hyperparameters. This dissertation offers limited-memory quasi-Newton
optimization methods to efficiently solve highly nonlinear and nonconvex optimiza-
tion problems for deep learning and deep RL applications. Together, these three
contributions provide a foundation for scaling RL to more complex control problems
through the learning of improved internal representations.

xxiii

Chapter 1

Introduction

Humans and non-human animals are capable of learning highly complex skills by rein-
forcing appropriate behaviors with reward. The midbrain dopamine system has long
been implicated in reward-based learning (Schultz et al., 1993), and the information
processing role of dopamine in learning has been well described by a class of rein-
forcement learning algorithms called Temporal Difference (TD) Learning (Montague
et al., 1996; Schultz et al., 1997). While TD Learning, by itself, certainly does not
explain all observed reinforcement learning phenomena, increasing evidence suggests
that it is key to the brain’s adaptive nature (Dayan and Niv, 2008).

Reinforcement learning (RL) — a class of machine learning problems — is learn-
ing how to map situations to actions so as to maximize numerical reward signals
received during the experiences that an artificial agent has as it interacts with its
environment (Sutton and Barto, 2017). An RL agent must be able to sense the state
of its environment and must be able to take actions that affect the state. The agent
may also be seen as having a goal (or goals) related to the state of the environment.

1.1 Motivation
One of the challenges that arise in reinforcement learning in real-world problems is
that the state space can be very large. This is a version of what has classically
been called the curse of dimensionality. Non-linear function approximators coupled
with reinforcement learning have made it possible to learn abstractions over high
dimensional state spaces. Formally, this function approximator is a parameterized
equation that maps from state to value, where the parameters can be constructively
optimized based on the experiences of the agent. One common function approximator
is an artificial neural network, with the parameters being the connection weights in
the network. Successful examples of using neural networks for reinforcement learn-
ing include learning how to play the game of Backgammon at the Grand Master
level (Tesauro, 1995). Also, recently, researchers at DeepMind Technologies used
deep convolutional neural networks (CNNs) to learn how to play some ATARI games
from raw video data (Mnih et al., 2013, 2015). The resulting performance on the

1

Chapter 1. Introduction 2

games was frequently at or better than the human expert level. In another effort,
DeepMind used deep CNNs and a Monte Carlo Tree Search algorithm that combines
supervised learning and reinforcement learning to learn how to play the game of Go
at a super-human level (Silver et al., 2016).

Despite these strengths, a mystery remains. There are some relatively simple
problems for which reinforcement learning coupled with a neural network function ap-
proximator has been shown to fail (Boyan and Moore, 1995). Surprisingly, some tasks
that superficially appear very simple cannot be perfectly mastered using this method.
For example, learning to navigate to a goal location in a simple two-dimensional space
in which there are obstacles has been shown to pose a substantial challenge to RL
using a backpropagation neural network (Boyan and Moore, 1995). Using a function
approximator to learn the value function has a benefit of generalization by including
a bias toward mapping similar sensory states to similar predictions of future reward.
At the same time, this generalization over similar states can produce a form of catas-
trophic interference, since there are cases in which similar states have widely different
values (pattern separation). This problem is exacerbated by the fact that the values of
states change as the action selection policy changes, producing a kind of destabilizing
nonstationarity to the learning process.

Another major challenge in reinforcement learning is the trade-off between explo-
ration and exploitation in an environment with sparse feedback. In order to maximize
rewards, an RL agent must prefer actions that it has tried in the past and found to be
effective in producing reward. But to discover such actions, it has to try actions that
it has not selected before. The agent has to exploit what it has already experienced
in order to obtain reward, but it also has to explore in order to make better action
selections in the future. The dilemma is that neither exploration nor exploitation can
be pursued exclusively without failing at the task. The agent must try a variety of
actions and progressively favor those that appear to be best.

Learning to operate over different levels of temporal abstraction is a key challenge
in tasks involving long-range planning. Hierarchical Reinforcement Learning (HRL)
is an umbrella term for reinforcement learning methods that make use of some form
of temporal abstraction. The acquisition of hierarchies of reusable skills is one of
the distinguishing characteristics of biological intelligence (Botvinick et al., 2009),
and the learning of such hierarchies is an important open problem in computational
reinforcement learning. In humans, these skills are learned during a substantial de-
velopmental period in which individuals are intrinsically motivated to explore their
environment and learn about the effects of their actions (Vigorito and Barto, 2010).
In the context of reinforcement learning, Sutton et al. (1999) proposed the options
framework, which involves abstractions over the space of actions. A suitable set of
skills can help improve an agent’s efficiency in learning to solve difficult problems.
If an agent can develop such skill sets automatically, it should be able to efficiently
solve a variety of problems without relying on hand-coded skills tailored to specific
problems.

A number of methods have been suggested towards this end. One approach is to

Chapter 1. Introduction 3

search for commonly occurring subpolicies (or “options”) in solutions to a set of tasks
and to generate skills with corresponding policies (Sutton et al., 1999). A second
approach is to identify subgoal states that are useful to reach and to learn skills that
take the agent efficiently to these subgoals (Simsek et al., 2005; Goel and Huber,
2003).

One major open problem in hierarchical reinforcement learning is automatic option
or subgoal discovery. Goel and Huber discuss a framework for subgoal discovery using
the structural aspects of a learned policy model (Goel and Huber, 2003). The existing
methods in the literature rely on either counting the visited states (Goel and Huber,
2003) or require construction of the graph of the state transitions (Simsek et al.,
2005; Machado et al., 2017). These methods have been successful in finding doorways
that act as good subgoals when navigating between rooms, but they do not have
the flexibility needed to find a broad range of other kinds of subgoals. The lack of
generalization and expensive memory requirements, as well as the lack of sensitivity to
the similarity and novelty across experiences, causes these methods to fail to discover
good subgoals in large-scale reinforcement problems.

Reinforcement learning is different from the most commonly used machine learning
paradigm: supervised learning. Supervised learning is learning from a training set
of labeled examples provided by a knowledgeable external supervisor. In contrast,
in the reinforcement learning problem it is generally taken as impractical to obtain
supervised information about desired behavior that is both correct and representative
of all the situations (states) in which the agent is expected to act (Sutton and Barto,
2017). Indeed, learning this optimal behavior is the goal of reinforcement learning.

Learning representations through the use of large-scale optimization methods, as
done in deep learning and reinforcement learning, is typically restricted to the class
of first-order algorithms, including the popular stochastic gradient decent method.
Although they are preferred for their ease of implementation and their relatively low
computational costs, they are not without their challenges. These types of methods
are heavily dependent on the tuning and initialization of network learning param-
eters. These methods rely on gradient information because of the computational
complexity associated with calculating the second derivative Hessian matrix inver-
sion, as well as the memory storage required in large-scale problems. The benefit
of using second derivative information is that these methods can result in improved
convergence properties for problems typically found in a non-convex setting such as
saddle points and local minima. As an alternative to gradient descent, limited mem-
ory quasi-Newton algorithms with line search or trust-region have been implemented
in a deep learning setting (Rafati et al., 2018) and applied to classification tasks.
These methods approximate second derivative information, improving the quality of
each training iteration and circumventing the need for application-specific parameter
tuning. Given that the quasi-Newton methods are efficient in supervised learning
problems, an important question arises: Is it also possible to use the quasi-Newton
methods to learn the state representations in reinforcement learning successfully? We
investigated this question as part of this dissertation research project.

Chapter 1. Introduction 4

1.2 Dissertation Outline, and Objectives
Chapter 2 provides background knowledge on reinforcement learning problems. The
first part of this chapter introduces the reinforcement learning problem within the
Markov Decision Processes (MDP) framework. Then the temporal difference learning
algorithms for solving the model-free reinforcement learning problem is introduced.
Some brief background information on artificial neural networks and convolutional
neural networks is provided.

In Chapter 3, I demonstrate how incorporating a ubiquitous feature of biologi-
cal neural networks into the artificial neural networks used to approximate the value
function can allow reinforcement learning to succeed at simple tasks that have pre-
viously challenged it. Specifically, I show that the incorporation of lateral inhibition,
producing competition between neurons so as to produce sparse conjunctive repre-
sentations, can produce success in learning to approximate the value function using
an artificial neural network, where only failure had been previously found. Through
computational simulation I provide preliminary evidence that learning a sparse rep-
resentation of states through a mechanism inspired by lateral inhibition in the brain
may help compensate for a weakness of using neural networks in TD Learning.

In Chapter 4, I first provide background information concerning the hierarchi-
cal reinforcement learning problem. Inspired by Kulkarni et al. (2016), I introduce
the meta-controller/controller framework, a two-level HRL technique for temporal
abstraction. Then I propose a hierarchical reinforcement learning framework that
makes it possible to simultaneously perform subgoal discovery, learn intrinsic motiva-
tion, and succeed at meta-policy learning. I offer an original approach to HRL that
does not require the acquisition of a model of the environment, suitable for large-scale
applications. I demonstrate the efficiency of our method on two RL problems with
sparse delayed feedback: a variant of the rooms environment and the first screen of
the ATARI 2600 Montezuma’s Revenge game. Our proposed method of automatic
subgoal discovery uses only the limited memory of past experiences of the learner.
The objective is to provide a scalable subgoal discovery method using unsupervised
learning and novelty detection methods that are suitable for large-scale reinforcement
learning problems. I briefly discuss the neural correlates of the model-free computa-
tional HRL framework. I show how intrinsic motivation learning produces an efficient
policy for exploring the environment, and I present an approach to learning the struc-
ture of the state space using unsupervised subgoal discovery.

In Chapter 5, I introduce novel large-scale limited-memory BFGS (L-BFGS) opti-
mization methods using the trust-region and the line-search strategies – as an alterna-
tive to the gradient descent methods. I implement practical computational algorithms
to solve the Empirical Risk Minimization problems that arise in machine learning and
deep learning applications. I provide empirical results on the classification task of the
MNIST dataset and show robust convergence with preferred generalization character-
istics. Based on the empirical results, I provide a comparison between the trust-region
strategy with the line-search strategy on their different convergence properties. I also

Chapter 1. Introduction 5

study techniques for initialization of the positive definite L-BFGS quasi-Newton ma-
trices in the trust-region strategy so that they do not introduce any false curvature
conditions when constructing the quadratic model of the objective function.

In Chapter 6, I introduce novel quasi-Newton optimization methods for deep re-
inforcement learning in the line-search framework. Our method bridges the disparity
between first order methods and second order methods by continuing to use gradi-
ent information to calculate low-rank Hessian approximations. I implement practical
computational algorithms to solve the Empirical Risk Minimization problems in deep
RL. The objective is learning the representations of the value function without the
need to fine tune the learning hyper-parameters. I offer methods for learning rep-
resentations that do not need experience replay mechanism in order to reduce the
computation time and the experience memory size. I provide a formal convergence
analysis, as well as empirical results on a subset of the classic ATARI 2600 games.

In Chapter 7, I provide concluding remarks and a summary of the contributions
of this dissertation.

Chapter 2

Reinforcement Learning

In this part, I provide a formal description of reinforcement learning. Most of the for-
malizations are taken from Sutton and Barto’s Introduction to Reinforcement Learn-
ing book (Sutton and Barto, 2017).

2.1 Reinforcement Learning Problem

2.1.1 Agent and Environment interaction
The reinforcement learning problem is that of learning through interaction with an
environment how to achieve a goal. The learner and decision maker is called the
agent and everything outside of the agent is called the environment. The agent and
environment interact over a sequence of discrete time steps, t = 0, 1, 2, . . . , T .

At each time step, t, the agent receives a representation of the environment’s
state, St = s from the set of all possible states, S, and on that basis the agent
selects an action, At = a, from the set of all available actions for the agent, A. One
time step later, at t + 1, as a consequence of the agent’s action, the agent receives a
reward, Rt+1 = r ∈ R, and also an update on the agent’s new state, St+1 = s′, from
the environment. Each cycle of interaction is called an experience (or a trajectory),
e = {s, a, r, s′}. Figure 2.1 summarizes the agent/environment interaction. It is useful
to think of the state as equivalent to the state of a dynamical system, but, here, we
refer to “state” as whatever information is available to the agent, beyond reward.

Figure 2.1: The agent/environment interaction in reinforcement learning. Adopted
from (Sutton and Barto, 1998)

6

Chapter 2. Reinforcement Learning 7

2.1.2 Policy Function
At each time step, the agent uses a mapping from states to possible actions, πt : S →
A. This mapping is called the agent’s policy. The stochastic policy can be defined as
the probability of taking action At = a at state St = s

πt(a|s) = p(At = a|St = s). (2.1)

A deterministic policy can be obtained as

a = πt(s) = arg max
a′

πt(a′|s) (2.2)

2.1.3 Objective in RL
The objective of the reinforcement learning problem is the maximization of the ex-
pected value of return, i.e. the cumulative sum of the received reward

Gt =
T∑

t′=t+1
γt
′−t−1Rt′ , (2.3)

where T ∈ N is a final step and γ ∈ (0, 1] is a discount factor. As γ → 1, the
objective takes future rewards into account more strongly (farsighted agent) and if
γ → 0 the agent is only concerned about maximizing the immediate reward (myopic
agent). Having γ < 1 can bound the return Gt < ∞ when T → ∞. The goal of the
reinforcement learning problem is finding an optimal policy, π∗ that maximizes the
expected return

π∗ = arg max
π

Eπ[Gt]. (2.4)

2.2 Markov Decision Processes
In this section, I introduce the formal problem of finite Markov decision processes
(MDP). MDPs are a classical formalization of sequential decision making, where
actions influence not just immediate rewards, but also subsequent situations, or states,
and through those future rewards. MDPs are a mathematically idealized form of the
reinforcement learning problem for which precise theoretical statements can be made.
I introduce key elements of the problem’s mathematical structure, such as returns,
value functions, and Bellman equations. I also introduce the value iteration algorithm
for solving MDPs in tabular fashion.

2.2.1 Formal Definition of MDP
A finite Markov decision process is a 5-tuple (S,A, P, R, γ), where S is a finite set
of states, A is a finite set of actions, P = Pr(st+1 = s′ | st = s, at = a) is the

Chapter 2. Reinforcement Learning 8

transition probability that action a in state s at time t will lead to state s′ at time
t+1, R(s, a) is the immediate reward received after transitioning from state s to state
s′, due to action a, γ ∈ (0, 1] is the discount factor, which represents the difference in
importance between future rewards and present rewards.

A state signal that succeeds in retaining all relevant information from the past
is said to be Markov, or to have the Markov property. Consider how a general en-
vironment might respond at time t + 1 to the action taken at time t. In general,
the dynamics can be defined only by specifying the complete joint probability dis-
tribution Pr(St+1 = s′, Rt+1 = r | S0:t, A0:t), but if the state signal has the Markov
property, then the environment’s response at t + 1 depends only on the state and
action representations at t, in which case the environment’s dynamics can be defined
by:

p(s′, r|s, a) = Pr(St+1 = s′, Rt+1 = r | St = s, At = a) ∀s′, r. (2.5)

If the state and action spaces are finite, then it is called a finite Markov decision
process. In this dissertation, I implicitly assume that the environment is a finite MDP.
In the case of continuous environments, I assume that the discretized environment
is a finite MDP. The probabilities given by the four-argument function p completely
characterize the dynamics of a finite MDP, such as the state-transition probabilities
p(s′|s, a)

p(s′|s, a) =
∑
r

p(s′, r|s, a). (2.6)

We can also compute the expected rewards for state-action pairs as a two-argument
function r(s, a)

r(s, a) , E[Rt+1 = r|St = s, At = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a), (2.7)

or the expected reward for state-action-next-state triples, r(s, a, s′)

r(s, a, s′) , E[Rt+1 = r|St = s, At = a, St+1 = s′] =
∑
r∈R

r
p(s′, r|s, a)
p(s′|s, a) . (2.8)

2.2.2 Value Function.
The value of state s under a policy π, denoted vπ(s) is the expected return when
starting from s and following π thereafter. For MDPs, vπ(s) can be defined as

vπ : S → R

vπ(s) = Eπ[Gt|St = s] = Eπ
[

T∑
t′=t+1

γt
′−t−1Rt′

∣∣∣∣∣ St = s

]
,

(2.9)

Chapter 2. Reinforcement Learning 9

where Eπ[.] denotes the expected value of a random variable given that the agent
follows policy π. The value of a terminal state is, by definition, always zero. The
function vπ is called the state-value function for policy π. Similarly, we can define
the state-action value function qπ(s, a) for policy π as

qπ : S ×A → R

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ
[

T∑
t′=t+1

γt
′−t−1Rt′

∣∣∣∣∣ St = s, At = a

]
,

(2.10)

Based on these definitions, the two value functions, vπ and qπ are related

vπ(s) =
∑
a

π(a|s) qπ(s, a). (2.11)

Note that, in the deterministic case,

vπ(s) = max
a

qπ(s, a). (2.12)

2.2.3 Bellman Equations
For any policy π and any state s, the following consistency condition holds between
the value of s and the value of its possible successor states s′:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s′)

]
, ∀s ∈ S (2.13)

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γ

∑
a′
π(a′|s′) qπ(s′, a′)

]
, ∀(s, a) ∈ S ×A. (2.14)

Note that (2.11) holds for Bellman’s equations and we can rewrite the Bellman
equations (2.13) and (2.14) using the expected reward and state transition probabil-
ities as

vπ(s) =
∑
a

π(a|s)
[
r(s, a) + γ

∑
s′
p(s′|s, a)vπ(s′)

]
, ∀s. (2.15)

qπ(s, a) = r(s, a) + γ
∑
s′
p(s′|s, a) max

a′
qπ(s′, a′), ∀s, a. (2.16)

Note that, when the policy is deterministic, Bellman’s equations can be written as

vπ(s) =
[
r(s, a) + γ

∑
s′
p(s′|s, a)vπ(s′)

]
, ∀s. (2.17)

qπ(s, a) = r(s, a) + γ
∑
s′
p(s′|s, a) max

a′
qπ(s′, a′), ∀s, a. (2.18)

Chapter 2. Reinforcement Learning 10

2.2.4 Optimal Value Function
The optimal state-value function, denoted v∗ is the objective function in a reinforce-
ment learning problem

v∗ = max
π

vπ(s), ∀s. (2.19)

There is always at least one policy that is better than or equal to all other policies.
This is an optimal policy

π∗ = arg max
π

vπ(s), ∀s. (2.20)

Optimal policies also share the same optimal action-value function, denoted as q∗

q∗ = max
π

qπ(s, a), ∀s, a. (2.21)

One can easily obtain optimal policies once the optimal value functions, v∗ or q∗ are
found. These functions satisfy the Bellman optimality equations

v∗(s) = max
a

{
r(s, a) + γ

∑
s′
p(s′|s, a)v∗(s′)

}
, ∀s. (2.22)

q∗(s, a) = r(s, a) + γ
∑
s′
p(s′|s, a) max

a′
q∗(s′, a′), ∀s, a. (2.23)

2.2.5 Value iteration algorithm
To compute v∗, one can choose an initial guess v0(s) and then iteratively apply

vi+1(s) = T[vi](s), (2.24)

where the operator T is defined by

T[v](s) = max
a

{
r(s, a) + γ

∑
s′
p(s′|s, a)v(s′)

}
, ∀s. (2.25)

To be clear, T is an operator that takes a function v : S → R and produces a function
T[v] : S → R as output. It’s easy to prove that, if 0 < γ < 1, the operator T[v] is
a contraction. Hence, T has a unique fixed point which is the same as the optimal
value function (based on the definition of the optimal value function in (2.22)). The
contraction mapping principle guarantees that

lim
i→∞

vi(s) = v∗(s), (2.26)

i.e., that the value iteration given by (2.24) converges to the optimal value function.
Once v∗ is known, we can compute q∗(s, a) (defined in (2.23)) as

q∗(s, a) = r(s, a) + γ
∑
s′
p(s′|s, a) max

a′
q∗(s′, a′), (2.27)

Chapter 2. Reinforcement Learning 11

where q∗ is the state-action optimal value function, also known as optimal Q-function.
Note that, we can compute v∗ if q∗ is known

v∗(s) = max
a

q∗(s, a). (2.28)

In order to compute q∗ directly, one can choose an initial guess q0(s, a) and then
iteratively apply

qi+1(s, a) = H[qi](s, a), (2.29)

where the operator H is defined by

H[q](s, a) = r(s, a) + γ
∑
s′
p(s′|s, a) max

a′
{q(s′, a′)}, ∀s, a. (2.30)

The operator H is also a contraction if 0 < γ < 1 and has a unique fixed point which
is same as the optimal Q-function, i.e. q∗ defined in (2.23). Once the optimal value
function v∗ or q∗ are computed, one can also find the optimal policy map function π∗:

π∗(s) = arg max
a

{
r(s, a) + γ

∑
s′
p(s′|s, a)v(s′)

}
, ∀s. (2.31)

π∗(s) = arg max
a

q∗(s, a), ∀s. (2.32)

2.3 Reinforcement Learning algorithms
Reinforcement learning involves learning to map situations to actions in order to
maximize a numerical reward signal (see Figure 2.1). Reinforcement Learning is a
class of solution methods for solving MDPs, when the agent does not have prior access
to the environment models, i.e. the state transition probabilities, p(s′|s, a), and the
reward function, r(s, a). The agent usually does not have access to the state space S.

Instead, the agent only perceives experiences (or trajectories) from interaction
with the environment. The agent can save a limited memory of past experiences (or
history) in the set D. It is important to note that each experience, (s, a, s′, r), is
an example of the probability distribution p(s′, r|s, a). Thus the experience memory
plays the role of the training data in RL.

These limitations make learning in RL more challenging than in MDP. The agent
should take actions to gain more rewards. At the same time it should take actions
in order to explore the state space. This is called the exploration-exploitation trade
off problem. Another major issue is when the state space is huge, and storing the
state-action values in a table is not possible.

RL methods can be categorized with regards to (1) their depth of search (shallow
search or deep search), and (2) whether they use sample or full backup. Figure 2.2
shows classes of methods along these two dimensions. If the environment, or model
of it, i.e. the state transition probabilities, p(s′|s, a), and reward function r(s, a, s′)

Chapter 2. Reinforcement Learning 12

(a)–(d) (e)

Figure 2.2: Two dimensions of RL algorithms. At the extremes of these dimensions
are (a) dynamic programming, (b) exhaustive search, (c) one-step TD learning and
(d) pure Monte Carlo approaches. Adopted from (Arulkumaran et al., 2017). (e) Re-
lationships among direct learning (model-free methods), and planning (model-based
methods). Adopted from (Sutton and Barto, 2017).

is known to the agent, one can find the optimal policy by a brute search (exhaus-
tive search) (Figure 2.2 (b)). The exhaustive search gets exponentially extensive for
larger state spaces. There are methods based on Dynamical Programming (DP) that
take into consideration the structural properties of the value function, and search
for optimal policies more efficiently (Bertsekas, 2000) (Figure 2.2 (a)). The curse of
dimensionality, and the fact that agent might not have access to environment models,
motivates methods based on sampling, and shallow DP.

In the remainder of this section, I introduce some of the most common RL meth-
ods, describing their approaches to solving MDP problems without access to environ-
ment models.

2.3.1 Value-based vs Policy-based Methods
There are two main approaches to solving RL problems: methods based on value
functions and methods based on policy search. There is also a hybrid, actor-critic
approach, which employs both value functions and policy search. Policy search al-
gorithms, such as policy gradient (Schulman et al., 2015) do not need to maintain a
value function model, but directly search for an optimal policy.

In this dissertation, I focus on value-based methods, due to their popularity, effi-
ciency, and interesting convergence properties.

Chapter 2. Reinforcement Learning 13

2.3.2 Bootstrapping vs Sampling
Algorithms based on Dynamic Programming can exploit the properties of the optimal
value function in the Bellman equation in Markovian environments. This leads to
methods that can learn the value function by bootstrapping. Temporal Difference
learning is an example of this class, which will be introduced in Section 2.4.

Instead of bootstrapping the value function using dynamic programming methods,
one can use Monte Carlo methods to estimate the expected return from a state by
averaging the return from multiple rollouts of a policy. Because of this, pure Monte
Carlo methods can also be applied in non-Markovian environments (Arulkumaran
et al., 2017). It is possible to get the best of both methods by combining TD learning
and Monte Carlo policy evaluation, as done in the TD(λ) algorithm. See (Sutton and
Barto, 2017) for more details.

2.3.3 Model-Free vs Model-Based RL
If a good model of the environment is given, it is possible to use dynamic programming
over all possible actions, sample trajectories for heuristic search (as was done by
AlphaGo (Silver et al., 2016)), or even perform an exhaustive search (Figure 2.2 (b)).

In RL, these models are not given. But, the interactions with the environment can
be used to learn a model of the environment. In model-based RL methods, the agent
attempts to learn a model of the environment, in order to simulate transitions, using
the learned model, and increase sample efficiency. In model-free RL methods, the
agent learns directly from the interactions with the environment, and does not learn
a model. Model-based methods rely on planning, while model-free methods primarily
rely on learning (Sutton and Barto, 2017). See Figure 2.2 (e) for the information flow
in model-free and model-based learning.

Model-based RL is particularly important in domains where interaction with the
environment is expensive. For example, in autonomous driving applications, it is safer
to plan using the learned model before executing a potentially dangerous action and
observing the consequence of that action from the environment. However, learning a
model introduces extra complexities, and an erroneous model might have undesired
effects on the learned policy (or value).

The agent in model-based RL does not need to learn a value function. The ex-
pectation of the future rewards can be computed by simulating the model to produce
simulated experiences. However, there are methods such as Dyna, which integrates
model-based (planning) and model-free (learning) methods, allowing the agent to
learn the value function by both interacting with the environment and simulating the
learned model. One can use the methods based on Dynamic Programing (bootstrap-
ping) to learn these value function. See (Sutton, 1991; Sutton and Barto, 2017) for
more details.

In this dissertation, I am mainly interested in model-free RL methods (direct
learning), specifically Temporal Difference learning. TD algorithms are among the
most prominent RL methods, since they are simple, efficient, powerful, and provide

Chapter 2. Reinforcement Learning 14

an account of the role of dopamine in learning in the brain. In the next section, I
introduce two popular TD algorithms: Q-learning and SARSA.

2.4 Temporal Difference Learning
Reinforcement learning can solve Markov decision processes without explicit speci-
fication of the transition probabilities. Temporal Difference (TD) learning (Sutton,
1988) is a model-free reinforcement learning algorithm that attempts to learn a policy
without learning a model of the environment. TD is a combination of Monte Carlo
ideas (repeated random sampling) and dynamic programming ideas. (See Figure 2.2
(c), and (d)). The goal of the TD approach is to learn to predict the value of a given
state based on what happens in the next state by bootstrapping, that is updating
values based on the learned values, without waiting for a final outcome. TD methods
have an advantage over DP methods in that they do not require a model of the envi-
ronment, or of its reward and next-state probability distributions. The advantage of
TD methods over Monte Carlo methods is that they are naturally implemented in an
on-line, fully incremental fashion. Both TD and Monte Carlo methods use experience
to solve the prediction problem.

Given some experience following a policy π, both methods update their estimate V
of vπ for the nonterminal states, st, occurring in that experience. Roughly speaking,
Monte Carlo methods wait until the return following the visit is known, then use that
return as a target for V (st). A simple every-visit Monte Carlo method suitable for
non-stationary environments is

V (st)← V (st) + α[Gt − V (st)] (2.33)

where Gt is the actual return following time t, and α is a constant step-size parameter.
In comparison, TD methods need to wait only until the next time step. At time t+ 1
they immediately form a target and make a useful update using the observed reward
rt+1 and the estimate V (st+1). The simplest TD method makes the update

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (2.34)

immediately on transition to st+1 and receiving rt+1. The quantity

δt = rt+1 + γV (st+1)− V (st)

is called the TD error. I provide two common algorithms that implements the TD
procedure with one-step backup (known as TD(0)).

2.4.1 SARSA
SARSA (State-Action-Reward-State-Action) is an on-policy TD algorithm that learns
the action-value function. The name reflects the fact that the main function for

Chapter 2. Reinforcement Learning 15

updating the Q-value depends on the current state of the agent s, the action the
agent chooses a, the reward r the agent gets for choosing this action, the state s′
that the agent will be in after taking that action, and finally the next action a′ the
agent will choose in its new state, hence (s, a, r, s′, a′). As in all on-policy methods,
the Q-function is continually estimated for the behavior policy using

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]. (2.35)

The reason that SARSA is on-policy is that it updates its Q-values using the Q-value
of the next state s′ and the current policy’s action a′. Algorithm 1 gives the SARSA
procedure.

Algorithm 1 SARSA: On-Policy TD Learning
Initialize Q(s, a) arbitrarily for all s ∈ S and a ∈ A(s)
repeat (for each episode)

initialize s
a←EPSILON-GREEDY(Q(s,A), ε) (see Algorithm 3)
repeat (for each step of episode)

take action a, observe reward r and next state s′
a′ ←EPSILON-GREEDY(Q(s′,A), ε)
Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
s← s′, a← a′

until (s is terminal or reaching to max number of steps)
until (convergence or reaching to max number of episodes)

2.4.2 Q-Learning
Q-Learning is a unifying TD control algorithm which simultaneously optimizes the
value function and the policy. Q-Learning is often used in an off-policy manner,
learning about the greedy policy while the data is generated by a different policy that
ensures exploration. Algorithm 2 gives the Q-learning procedure.

2.5 Generalization in Reinforcement Learning
The TD learning algorithms need to maintain an estimate of the value function, and
this function could be stored as a simple look-up table. However, when the state
space is large or not all states are observed during training, storing these estimated
values in a table is no longer possible. One can, instead, use a function approximator
to represent the mapping to the estimated value. A parameterized functional form
with weight vector w can be used: v(s;w) ≈ vπ(s) or q(s, a;w) ≈ qπ(s, a). In this
case, TD learning requires a search through the space of parameter values, w, for the
function approximator. One common way to approximate the value function is to use

Chapter 2. Reinforcement Learning 16

Algorithm 2 Q-Learning: Off-Policy TD Learning
Initialize Q(s, a) arbitrarily for all s ∈ S and a ∈ A(s)
repeat (for each episode)

initialize s
repeat (for each step of episode)

a←EPSILON-GREEDY(Q(s,A), ε) (see Algorithm 3)
take action a, observe reward r and next state s′
Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
s← s′

until (s is terminal)
until (convergence or reaching to max number of episodes)

Algorithm 3 The ε-greedy policy function
Input Q(s, a), action space A, exploration rate ε ∈ [0, 1]
if rand() < ε then

return a random action a ∈ A
else

return a← arg maxaQ(s, a)
end if

a nonlinear functional form, such as that embodied by an artificial neural network.
When a change is made to the weights based on an experience from a particular state,
the changed weights will then affect the value function estimates for similar states,
producing a form of generalization. Such generalization makes the learning process
potentially much more powerful.

2.5.1 Feed-forward Neural Networks
Feed-forward neural networks are called networks because they are typically repre-
sented by composing together many different functions (Goodfellow et al., 2016).
The goal of a feed-forward network is to approximate some function q∗. Consider
a value function q∗(s) that maps the state s, as an input, to the corresponding
q(s, a) values for every possible action. A feed-forward network defines a mapping
Q = [q(s, a1;w), q(s, a2;w), . . .], and it can learn the values of the parameters, w, that
result in the best approximation of the target function. The defining characteristics of
different feed-forward artificial neural network architectures are the number of hidden
layers and the type of layers used (convolutional, fully connected, etc). Each layer is
described by the following expression

h(i) = θ(i)(h(i−1), w(i)), for i = 1, . . . , n, (2.36)

where n is number of the layers, h(i−1) is the input to the current layer, h(i) is the
output of the current layer, and w(i) corresponds to the weight parameters of the

Chapter 2. Reinforcement Learning 17

layer, which are adjusted during training. Note that h0 is the input to the whole
network (e.g., a representation of the state). The choice of layer architecture, θ(i),
can include fully connected layers, convolutions, pooling layers, and autoencoders.
The layer architecture can also include an activation function, such as a rectified
linear unit (ReLU), a logistic sigmoid, or the softmax function. Having incorporating
indices to the layer components one can represent an artificial neural network with n
layers as

h(1) = θ(1)(h(0),W (1)),
h(2) = θ(2)(h(1),W (2)),

...
h(n) = θ(n)(h(n−1),W (n)),

(2.37)

During the training of the network, the information h(0) = s is passed through the
layers to obtain the network’s approximation of the desired output, h(n) = Q. The
objective is to adjust the weights w(i) in order to improve the quality of the output,
h(n). Learning is accomplished through an optimization procedure, minimizing a loss
function, L.

2.5.2 Loss Function as Expectation of TD Error
The network can be trained by minimizing a loss functions L(w) that changes at each
training iteration,

L(w) = E(s,a,r,s′)∼D

[1
2
(
y − q(s, a;w)

)2
]
, (2.38)

where

y =
[
r + γq(s′, a′;w−)

]
, (2.39)

is the target values (for SARSA learning method), w− is the learning parameters
from the previous iteration, and D is experience replay memory. Note that for the
Q-Learning method, the following target values should be used

y = [r + γmax
a′

q(s′, a′;w−)]. (2.40)

It is common in the deep learning literature to collect and save experiences in a
replay memory D and update the weights of the network by replaying this memory
(Mnih et al., 2013, 2015). At each training iteration, an experience e = (s, a, r, s′)
is sampled uniformly from the replay memory D. The parameters from the previous
iteration, w−, are held fixed when optimizing the loss function, L(w). Note that the
targets depend on the network weights. This is in contrast with the targets used for
supervised learning, which are fixed before learning begins.

Chapter 2. Reinforcement Learning 18

2.6 Empirical Risk Minimization in Deep RL
In practice, instead of minimization of the expected risk in (2.38) one can define an
optimization problem for the empirical risk as follows

min
w∈Rn

L(w) , 1
2N

∑
e∈D

[(
y − q(s, a;w)

)2
]
, (2.41)

where n is the total number of parameters, and N = |D| is the size of data. In
order to produce a good approximation of the value function, one should solve the
empirical risk minimization problem (2.41) using a TD learning algorithm. In large-
scale optimization problems, n, and N are very large numbers. Additionally, L(w) is
a nonconvex and highly nonlinear function. The most simple and common method
used in the reinforcement learning literature is the Stochastic Gradient Descent (SGD)
method. SGD requires computation of the gradient of the objective function, ∇L(w)
in (2.41), with respect to the parameters, w. Rather than computing the full gradient,
it is often computationally expedient to optimize the loss function stochastically. It
is common to sample a mini-batch J ⊂ D and compute ∇(J)L(w) ≈ ∇L(w), using
the experiences from J as follows

∇(J)L(w) = −1
|J |

∑
(s,a,r,s′)∈J

[(
y − q(s, a;w)

)
∇q(s, a;w)

]
. (2.42)

Algorithm 4 Q-Learning with Experience Replay
Initialize replay memory D
Initialize parameters of q(s, a;w) arbitrarily
repeat (for each episode)

initialize s
a←EPSILON-GREEDY(q(s,A;w), ε)
repeat (for each step of episode t = 1, . . . , T)

take action a, observe reward r and next state s′
store experience e = (s, a, r, s′) to experience replay memory D
sample a random mini-batch from J ⊂ D and compute ∇wL(w) in (2.42)
update weights (e.g. SGD step) w ← w − α∇wL(w)
s← s′

until (s is terminal)
until (convergence or reaching to max number of episodes)

Algorithm 4 outlines Q-learning with experience replay. Although methods based
on SGD are simple, they have undesirable convergence properties especially in large-
scale problems. These methods require tuning so many hyperparamters, and they
require large memory in order to replay experiences. In Chapters 5 and 6, I study al-
ternative methods for solving the large-scale nonconvex optimization problem (2.41)
to improve the performance of learning, as well as improve the convergence proper-
ties.

Chapter 3

Learning Sparse Representations in
Reinforcement Learning

Abstract
Reinforcement learning (RL) algorithms allow artificial agents to improve their se-
lection of actions to increase rewarding experiences in their environments. Temporal
Difference (TD) Learning – a model-free RL method – is a leading account of the
midbrain dopamine system and the basal ganglia in reinforcement learning. These
algorithms typically learn a mapping from the agent’s current sensed state to a se-
lected action (known as a policy function) via learning a value function (expected
future rewards). TD Learning methods have been very successful on a broad range
of control tasks, but learning can become intractably slow as the state space of the
environment grows. This has motivated methods that learn internal representations
of the agent’s state, effectively reducing the size of the state space and restructuring
state representations in order to support generalization. However, TD Learning has
been shown to fail to learn some fairly simple control tasks, challenging this explana-
tion of reward-based learning. We hypothesize that such failures do not arise in the
brain because of the ubiquitous presence of lateral inhibition in the cortex, produc-
ing sparse distributed internal representations that support the learning of expected
future reward. The sparse conjunctive representations can avoid catastrophic inter-
ference while still supporting generalization. We provide support for this conjecture
through computational simulations, demonstrating the benefits of learned sparse rep-
resentations for three problematic classic control tasks: Puddle-world, Mountain-car,
and Acrobot.

3.1 Introduction
Humans and non-human animals are capable of learning highly complex skills by rein-
forcing appropriate behaviors with reward. The midbrain dopamine system has long

19

Chapter 3. Learning Sparse Representations in Reinforcement Learning 20

been implicated in reward-based learning (Schultz et al., 1993), and the information
processing role of dopamine in learning has been well described by Temporal Differ-
ence (TD) Learning (Montague et al., 1996; Schultz et al., 1997). While TD Learning,
by itself, certainly does not explain all observed reinforcement learning phenomena,
increasing evidence suggests that it is key to the brain’s adaptive nature (Dayan and
Niv, 2008).

Beyond empirical support for the TD Learning account of biological reinforce-
ment learning, the power of this learning method suggests that it may be capable
of explaining the neural basis of the successful learning of even fairly complex tasks
(Sutton and Barto, 1998). This algorithm can learn elaborate decision making skills,
such as playing the game of Backgammon at the Grand Master level (Tesauro, 1995).
There are even proofs that TD Learning will converge to optimal performance, given
enough experience (Dayan, 1992).

Despite these strengths, a mystery remains. There are some relatively simple
problems for which TD Learning has been shown to fail (Boyan and Moore, 1995).
These problems arise when the space of possible sensory states of the learning agent
is so large that it is intractable to store the agent’s learned assessment of the value
or quality of each state (i.e., its expectation of future reward, given that it is in that
state) in a large look-up table. In these cases, it is necessary to encode the agent’s
learned value function, mapping from sensory state features to an expectation of
future reward, using some form of function approximator. As previously reviewed,
this function approximator is formally a parameterized equation that maps from state
to value, where the parameters can be optimized based on the experiences of the agent.
As discussed in Chapter 2, a commonly used function approximator is an artificial
neural network, with the parameters being the connection weights. Such a network,
adapted using a version of stochastic gradient descent called the backpropagation of
error learning method (Rumelhart et al., 1986), was used in the previously mentioned
Backgammon playing program (Tesauro, 1995). As illustrated by this program, TD
Learning with an artificial neural network approximating the value function, can solve
apparently complex tasks. Using a function approximator to learn the value function
has the added benefit of potentially supporting generalization by including a bias
toward mapping similar sensory states to similar predictions of future reward.

Surprisingly, some tasks that superficially appear very simple cannot be perfectly
mastered using this method. For example, learning to navigate to a goal location
in a simple two-dimensional space in which there are obstacles has been shown to
pose a substantial challenge to TD Learning using a backpropagation neural network
(Boyan and Moore, 1995). Note that the proofs of convergence to optimal performance
depend on the agent maintaining a potentially highly discontinuous value function in
the form of a large look-up table, so the use of a function approximator for the value
function violates the assumptions of those formal analyses. Still, it seems unusual
that this approach to learning can succeed at some difficult tasks but fail at some
other fairly easy tasks.

The power of TD Learning to explain biological reinforcement learning is greatly

Chapter 3. Learning Sparse Representations in Reinforcement Learning 21

reduced by this observation. If TD Learning fails at simple tasks that are well within
the reach of humans and non-human animals, then it cannot be used to explain how
the dopamine system supports such learning.

In this chapter, we demonstrate how incorporating a ubiquitous feature of biolog-
ical neural networks into the artificial neural networks used to approximate the value
function can allow TD Learning to succeed at simple tasks that have previously chal-
lenged it. Specifically, we show that the incorporation of lateral inhibition, producing
competition between neurons so as to produce sparse conjunctive representations,
can produce success in learning to approximate the value function using an artificial
neural network, where only failure had been previously found. Thus, through compu-
tational simulation, we provide preliminary evidence that lateral inhibition may help
compensate for a weakness of TD Learning, improving this machine learning method
and further buttressing the TD Learning account of dopamine-based reinforcement
learning in the brain.

In the remainder of this chapter, we initially provide some background concern-
ing the reported failure of TD Learning on fairly simple problems. We then provide
details concerning our computational simulations of TD Learning with lateral inhi-
bition included. The results of these simulations, comparing the performance of our
approach to previously examined methods, are then described. We close this chapter
with a discussion of the reported results and ideas for future work in this area.

3.2 Background
Consider a very simple two-dimensional “grid world” environment that remains static
over time. A reinforcement learning agent in this environment may be faced with the
choice, at each time step, to move a fixed distance either North, South, East, or West.
On each time step, the agent receives mild negative reinforcement, until it moves to
a goal location in the Northeast corner of the space, at which point the agent is
relieved of negative reinforcement. Further, imagine that this environment contains
“puddles” through which the agent can move, but moving into puddle locations pro-
duces extremely strong negative reinforcement. Finally, consider the case in which
the agent can perfectly sense its location in the grid environment (i.e., its Cartesian
coordinates), but it otherwise has no senses. This “puddle world task” is illustrated
in Figure 3.3. Equipped with TD Learning, using a function approximator to learn
the value function, could such an agent learn to avoid the puddles and move rapidly
to the goal location, after substantial experience in the environment?

Boyan and Moore (1995) provided simulation evidence suggesting that such learn-
ing is impossible. They tried a variety of different value function approximators,
including a backpropagation network with a single hidden layer, but none of them
converged on a good solution to the problem. Indeed, as the agent continued to
explore the environment, the estimate of future reward for locations kept changing,
failing to settle down to a fixed value function.

This observation suggests that the difficulty in learning this problem arises from

Chapter 3. Learning Sparse Representations in Reinforcement Learning 22

a specific feature of reinforcement learning. In particular, the value function that
the function approximator is trying to learn is, in a way, a moving target. Early in
training, when the agent is unlikely to make it to the goal location, the expected
future reward for a given location might be quite low. Later, if the agent has had
some successes, the value for the same location might be higher. If the value function
is stored in a large look-up table, then adjusting the value of one location has no in-
fluence on the values associated with other locations, allowing for small incremental
changes in the value function. When using a function approximator, however, adjust-
ing parameters (e.g., artificial neural network connection weights) for one location
will likely change the value assigned to many other locations, potentially causing the
un-learning of appropriate values for those other locations (catastrophic inference).
This is a reasonable hypothesis for the observed lack of convergence.

In the following year, Sutton (1996) showed that this task could be learned by
a TD Learning agent by hard-wiring the hidden layer units of the backpropagation
network used to learn the value function to implement a fixed sparse conjunctive
(coarse) code of the agent’s location. The specific encoding used was one that had
been previously proposed in the CMAC model of the cerebellum (Albus, 1975). Each
hidden unit would become active only when the agent was in a location within a
particular range of x values and within a particular range of y values. The conjoining
of conditions on both coordinates is what made this code “conjunctive” in nature.
Also, for any given location, only a small fraction of the hidden units displayed non-
zero activity. This is what it means for the hidden representation to be a “sparse”
code. Locations that were close to each other in the environment produced more
overlap in the hidden units that were active than locations that were separated by a
large distance. By ensuring that most hidden units had zero activity when connection
weights were changed, this approach kept changes to the value function in one location
from having a broad impact on the expected future reward at distant locations. (In
the backpropagation of error learning algorithm, a connection weight is changed in
proportion to the activity on the sending side of that connection, so there is no change
if there is no activity being sent.) By engineering the hidden layer representation,
this reinforcement learning problem was solved.

This is not a general solution, however. If the same approach was taken for another
reinforcement learning problem, it is quite possible that the CMAC representation
would not be appropriate. Thus, the method proposed by Sutton (1996) does not
help us understand how TD Learning might flexibly learn a variety of reinforcement
learning tasks. This approach requires prior knowledge of the kinds of internal rep-
resentations of sensory state that are easily associated with expected future reward,
and there are simple learning problems for which such prior knowledge is unavailable.

We hypothesize that the key feature of the Sutton (1996) approach is that it pro-
duces a sparse conjunctive code of the sensory state. Representations of this kind
need not be fixed, however, but might be learned at the hidden layers of neural net-
works. There is substantial evidence that sparse representations are generated in
the cortex by neurons that release the transmitter GABA (O’Reilly and Munakata,

Chapter 3. Learning Sparse Representations in Reinforcement Learning 23

2001) via lateral inhibition. Biologically inspired models of the brain show that, the
sparse representation in the hippocampus can minimize the overlap of representations
assigned to different cortical patterns. This leads to pattern separation, avoiding the
catastrophic interference, but also supports generalization by modifying the synap-
tic connections so that these representations can later participate jointly in pattern
completion (O’Reilly and McClelland, 1994; Noelle, 2008).

Computational cognitive neuroscience models have shown that a combination of
feedforward and feedback inhibition naturally produces sparse conjunctive codes over
a collection of excitatory neurons (O’Reilly and Munakata, 2001). Such patterns
of lateral inhibition are ubiquitous in the mammalian cortex (Kandel et al., 2012).
Importantly, neural networks containing such lateral inhibition can still learn to rep-
resent input information in different ways for different tasks, retaining flexibility while
producing the kind of sparse conjunctive codes that may support reinforcement learn-
ing. Sparse distributed representation schemes have the useful properties of coarse
codes while reducing the likelihood of interference between different representations.

3.3 Methods for Learning Sparse Representations

3.3.1 Lateral inhibition
Lateral inhibition can lead to sparse distributed representations (O’Reilly and Mu-
nakata, 2001) by making a small and relatively constant fraction of the artificial
neurons active at any one time (e.g., 10% to 25%). Such representations achieve a
balance between the generalization benefits of overlapping representations and the
interference avoidance offered by sparse representations. Another way of viewing
the sparse distributed representations produced by lateral inhibition is in terms of a
balance between competition and cooperation between neurons participating in the
representation.

It is important to note that sparsity can be produced in distributed representations
by adding regularization terms to the learning loss function, providing a penalty dur-
ing optimization for weights that cause too many units to be active at once (French,
1991; Zhang et al., 2015; Liu et al., 2018). This learning process is not necessary,
however, when lateral inhibition is used to produce sparse distributed representa-
tions. With this method, feedforward and feedback inhibition enforce sparsity from
the very beginning of the learning process, offering the benefits of sparse distributed
representations even early in the reinforcement learning process.

3.3.2 k-Winners-Take-All mechanism
Computational cognitive neuroscience models have shown that fast pooled lateral in-
hibition produces patterns of activation that can be roughly described as k-Winners-
Take-All (kWTA) dynamics (O’Reilly and Munakata, 2001). A kWTA function en-
sures that approximately k units out of the n total units in a hidden layer are strongly

Chapter 3. Learning Sparse Representations in Reinforcement Learning 24

active at any given time. Applying a kWTA function to the net input in a hidden
layer gives rise to a sparse distributed representations, and this happens without the
need to solve any form of constrained optimization problem. The kWTA function is
provided in Algorithm 5. The kWTA mechanism only requires sorting the net input
vector in the hidden layer in every feedforward direction to find the top k + 1 active
neurons. Consequently, it has at most O(n+ k log k) computational time complexity
using a partial quicksort algorithm, where n is the number of neurons in the largest
hidden layer, and k is the number of winner neurons. k is relatively smaller than n.
For example k = 0.1 × n is considered for the simulations reported in this chapter,
and this ratio is commonly used in the literature.

Algorithm 5 The k-Winners-Take-All Function
Input η: net input to the hidden layer
Input k: number of winner units
Input constant parameter 0 < q < 1, e.g., q = 0.25
Find top k+1 most active neurons by sorting η, and store them in η′ in descending
order
Compute kWTA bias, b← η′k − q(η′k − η′k+1)
return ηkWTA ← η − b

3.3.3 Feedforward kWTA neural network
In order to bias a neural network toward learning sparse conjunctive codes for sensory
state inputs, we constructed a variant of a backpropagation neural network architec-
ture with a single hidden layer (see Figure 3.1) that utilizes the kWTA mechanism
described in Algorithm 5.

Consider a continuous control task (such as grid-world or puddle-world) where
the state of the agent is described as 2D coordinates, s = (x, y). Suppose that the
agent has to choose between four available actions A ={North, South, East, West}.
Suppose that the x coordinate and the y coordinate are in the range [0, 1] and each
x and y range is discretized uniformly to nx and ny points correspondingly. Let’s
denote X = [0 : 1/nx : 1], and Y = [0 : 1/ny : 1] as the discretized vectors, i.e., X is a
vector with nx+1 elements from 0 to 1, and all points between them with the grid size
1/nx. To encode a coordinate value for input to the network, a Gaussian distribution
with a peak value of 1, a standard deviation of σx = 1/nx for the x coordinate, and
σy = 1/ny for the y coordinate, and a mean equal to the given continuous coordinate
value, µx = x, and µy = y, was used to calculate the activity of each of the X and
Y input units. Let’s denote the results as x and y. The input to the network is a
concatenation vector s := (x,y).

We calculate the net input values of hidden units based on the network inputs,
i.e., the weighted sum of the inputs

η := W ihs + bih, (3.1)

Chapter 3. Learning Sparse Representations in Reinforcement Learning 25

Figure 3.1: The kWTA neural network architecture: a backpropagation network with
a single layer equipped with the k-Winner-Take-All mechanism (from Algorithm 5).
The kWTA bias is subtracted from the hidden units net input that causes polarized
activity which supports the sparse conjunctive representation. Only 10% of the neu-
rons in the hidden layer have high activation. Compare the population of red (winner)
neurons to the orange (loser) ones.

where W ih are weights, and bih are biases from the input layer to the hidden layer.
After calculating the net input, we compute the kWTA bias, b, using Algorithm 5.

We subtract b from all of the net input values, η, so that the k hidden units with the
highest net input values have positive net input values, while all of the other hidden
units’ adjusted net input values become negative. These adjusted net input values,
i.e. ηkwta = η− b were transformed into unit activation values using a logistic sigmoid
activation function (gain of 1, offset of −1), resulting in hidden unit activation values
in the range between 0.0 and 1.0,

h = 1
1 + e−(ηkwta−1) , (3.2)

with the top k units having activations above 0.27 (due to the −1 offset), and the “los-
ing” hidden units having activations below that value. The k parameter controlled the
degree of sparseness of the hidden layer activation patterns, with low values produc-
ing more sparsity (i.e., fewer hidden units with high activations). In the simulations
in this chapter, we set k to be 10% of the total number of hidden units. The output
layer of the kWTA neural network is fully connected to the hidden layer and has |A|
units, with each unit i = 1, . . . , |A| representing the state-action values q(s, ai;w).
We calculate these values by computing the activation in the output layer

q = W hoh + bho, (3.3)

Chapter 3. Learning Sparse Representations in Reinforcement Learning 26

where W ho are weights, and bho are biases, from the hidden layer to the output layer.
The output units used a linear activation function, hence, q is a vector of the state-
action values.

In addition to encouraging sparse distributed representations, this kWTA mech-
anism has two properties that are worthy of note. First, introducing this highly
nonlinear mechanism violates some of the assumptions relating the backpropagation
of error procedure to stochastic gradient descent in error. Thus, the connection weight
changes recommended by the backpropagation procedure may slightly deviate from
those which would lead to local error minimization in this network. We opted to ig-
nore this discrepancy, however, trusting that a sufficiently small learning rate would
keep these deviations small. Second, it is worth noting that this particular kWTA
mechanism allows for a distributed pattern of activity over the hidden units, making
use of intermediate levels of activation. This provides the learning algorithm with
some flexibility, allowing for a graded range of activation levels when doing so re-
duces network error. As connection weights from the inputs to the hidden units grow
in magnitude, however, this mechanism will drive the activation of the top k hidden
units closer to 1 and the others closer to 0. Indeed, an examination of the hidden layer
activation patterns in the kWTA-equipped networks used in this study revealed that
the k winning units consistently had activity levels close to the maximum possible
value, once the learning process was complete.

3.4 Numerical Simulations

3.4.1 Experiment design
In order to assess our hypothesis that biasing a neural network toward learning sparse
conjunctive codes for sensory state inputs will improve TD Learning when using a
neural network as a function approximator for q(s, a;w) state-action value function,
we constructed three types of backpropagation networks:

kWTA network. A single layer backpropagation neural network equipped with the
k-Winners-Take-All mechanism. See Figures 3.1 and 3.2(c).

Regular network. A single layer backpropagation neural network without the kWTA
mechanism. See Figure 3.2(b).

Linear network. A linear neural network without a hidden layer. See Figure 3.2(a)

There was complete connectivity between the input units and the hidden units
and between the hidden units and the output units. For the linear network, there was
full connectivity between the input layer and the output layer. All connection weights
were initialized to uniformly sampled random values in the range [−0.05, 0.05].

In order to investigate the utility of sparse distributed representations, simula-
tions were conducted involving three relatively simple reinforcement learning control

Chapter 3. Learning Sparse Representations in Reinforcement Learning 27

(a) Linear (b) Regular (c) kWTA

Figure 3.2: The neural network architectures used as the function approximator for
state action values q(s, a;w). (a) Linear network. (b) Regular backpropagation neural
network. (c) kWTA network.

tasks: the Puddle-world task, the Mountain-car task, and the Acrobot task. These
reinforcement learning problems were selected because of their extensive use in the
literature (Boyan and Moore, 1995; Sutton, 1996). In this section, each task is de-
scribed. We tested the SARSA variant of TD Learning (Sutton and Barto, 2017).
(See Algorithm 6.) on each of the three neural networks architectures. The Matlab
code for the simulations is available at http://rafati.net/td-sparse/.

The specific parameters for each simulation can be found in the description of the
simulation tasks below. In section 3.5, the numerical results for training performance
for each task are reported and discussed.

3.4.2 The Puddle-world task
The agent in the Puddle-world task attempts to navigate in a dark 2D grid world to
reach a goal location at the top right corner, and it should avoid entering poisonous
“puddle” regions (Figure 3.3). In every episode of Algorithm 1, the agent is located
in a random state. The agent can choose to move in one of four directions, A =
{North, South, East, West}. For the Puddle-world task, the x-coordinate and the
y-coordinate of the current state, s, were presented to the neural network over two
separate pools of input units. Note that these coordinate values were in the range
[0, 1], as shown in Figure 3.3. Each pool of input units consisted of 21 units, with each
unit corresponding to a coordinate location between 0 and 1, inclusive, in increments
of 0.05. To encode a coordinate value for input to the network, a Gaussian distribution
with a peak value of 1, a standard deviation of 0.05, and a mean equal to the given

http://rafati.net/td-sparse/

Chapter 3. Learning Sparse Representations in Reinforcement Learning 28

Algorithm 6 TD SARSA learning method using a neural network
Initialize parameters of q(s, a;w) arbitrarily
repeat (for each episode)

initialize s
a←EPSILON-GREEDY(q(s,A;w), ε)
repeat (for each step of episode t = 1, . . . , T)

take action a, observe reward r and next state s′
a′ ←EPSILON-GREEDY(q(s′,A;w), ε)
compute TD error, δ = r + γq(s′, a′;w)− q(s, a;w)
compute ∇L(w) = −δ∇wQ(s, a;w)
update weights (e.g. SGD step) w ← w − α∇L(w)
s← s′, a← a′

until (s is terminal)
until (convergence or reaching to max number of episodes)

continuous coordinate value was used to calculate the activity of each of the 21 input
units (see Figure 3.1).

We use each of the three mentioned neural network models as function approxima-
tors for state-action values (see Figure 3.2). All networks had four output units, with
each output corresponding to one of the four directions of motion. The hidden layer
for both regular BP and kWTA neural networks had 220 hidden units. In the kWTA
network, only 10% (or 22) of the hidden units were allowed to be highly active.

At the beginning of the simulation, the exploration probability, ε, was set to a
relatively high value of 0.1, and it remained at this value for much of the learning
process. Once the average magnitude of δ over an episode fell below 0.2, the value
of ε was reduced by 0.1% each time the goal location was reached. Thus, as the
agent became increasingly successful at reaching the goal location, the exploration
probability, ε, approached zero. (Annealing the exploration probability is commonly
done in systems using TD Learning.) The agent continued to explore the environment,
one episode after another, until the average absolute value of δ was below 0.01 and
the goal location was consistently reached, or a maximum of 44, 100 episodes had
been completed. This value was heuristically selected as a function of the size of the
environment: (21 × 21) × 100 = 44, 100. Each episode of SARSA was terminated if
the agent had reached the goal in the corner of the grid or after the maximum steps,
T = 80, had been taken. The learning rate remained fixed α = 0.005 during the
training.

When this reinforcement learning process was complete, we examined both the
behavior of the agent and the degree to which its value function approximations,
q(s, a;w), matched the correct values determined by running SARSA to convergence
while using a large look-up table to capture the value function.

Chapter 3. Learning Sparse Representations in Reinforcement Learning 29

Figure 3.3: The agent in puddle-world task attempts to reach the goal location (fixed
in the Northeast corner) in the least time steps by avoiding the puddle. The agent
moves a distance of 0.05 either North, South, East, or West on each time step. Enter-
ing a puddle produces a reward of (−400× d), where d is the distance of the current
location to the edge of the puddle. This value was −1 for most of the environment,
but it had a higher value, 0, at the goal location in the Northeast corner. Finally,
the agent receives a reward signal of −2 if it had just attempted to leave the square
environment. This pattern of reinforcement was selected to parallel that previously
used in Sutton (1996).

3.4.3 The Mountain-car task
In this reinforcement learning problem, the task involves driving a car up a steep
mountain road to a high goal location. The task is difficult because the force of
gravity is stronger than the car’s engine (see Figure 3.4). In order to solve the
problem, the agent must learn first to move away from the goal, then use the stored
potential energy in combination with the engine to overcome gravity and reach the
goal state. The state of the Mountain-car agent is described by the car’s position
and velocity, s = (x, ẋ). There are three possible actions: A ={forward, neutral,
backward} throttle of the motor. After choosing action a ∈ A, the car’s state is
updated by the following equations

xt+1 = bound(xt + ẋt+1) (3.4a)
ẋt+1 = bound(ẋ+ 0.0001at − 0.0025 cos(3xt)), (3.4b)

where the bound function keeps state variables within their limits: x ∈ [−1.2,+0.5]
and ẋ ∈ [−0.07,+0.07]. If the car reaches the left environment boundary, its velocity

Chapter 3. Learning Sparse Representations in Reinforcement Learning 30

-1.2 -0.5 0 0.5

-1

0

1

y = sin(3x)

Goal

Figure 3.4: The Mountain-car task. The goal is to drive an underpowered car up a
steep hill. The agent received -1 reward for each time step until it reached the goal,
at which point it received 0 reward.

is reset to zero. In order to present the values of the state variables to the neural
network, each variable was encoded as a Gaussian activation bump surrounding the
input corresponding to the variable value. Every episode started from a random
position and velocity. Both the x-coordinate and the ẋ velocity was discretized to 60
mesh points, allowing each variable to be represented over 61 inputs. To encode a
state value for input to the network, a Gaussian distribution was used to calculate
the activity of each of the 61 input units for that variable. The network had a total
of 122 inputs.

All networks had three output units, each corresponding to one of the possible
actions. Between the 122 input units and the 3 output units was a layer of 61× 61×
0.7 = 2604 hidden units (for the kWTA and the Regular networks). The hidden layer
of the kWTA network was subject to the previously described the kWTA mechanism,
parameterized so as to allow 10%, or 260, of the hidden units to be highly active.

We used the SARSA version of TD Learning (Algorithm 1). The exploration
probability, ε, was initialized to 0.1 and it was decreased by 1% after each episode
until reaching a value of 0.0001. The agent received a reward of r = −1 for most
of the states, but it received a reward of r = 0 at the goal location (x ≥ 0.5).
If the car collided with the leftmost boundary, the velocity was reset to zero, but
there was no extra punishment for bumping into the wall. The learning , α = 0.001
stayed fixed during the learning. The agent explored the Mountain-car environment
in episodes. Each episode began with the agent being placed at a location within the
environment, sampled uniformly at random. Actions were then taken, and connection
weights updated, as described above. The episode ended when the agent reached the
goal location or after the maximum of T = 3000 actions had been taken. The agent
continued to explore the environment, one episode after another, until the average

Chapter 3. Learning Sparse Representations in Reinforcement Learning 31

The goal is reaching the tip to this line

1

✓1

✓2

tip
⌧

Figure 3.5: The Acrobot task. The goal is to swing the tip (i.e. “feet”) above the
horizontal by the length of the lower “leg” link. The agent receives -1 reward until it
reaches to goal, at which point it receives 0 reward.

absolute value of δ was below 0.05 and the goal location was consistently reached, or
a maximum of 200, 000 episodes had been completed.

3.4.4 The Acrobot task
We also examined the utility of learning sparse distributed representations on the
Acrobot control task, which is a more complicated task and one attempted by Sut-
ton (1996). The acrobot is a two-link under-actuated robot, a simple model of a
gymnast swinging on a high-bar (Sutton, 1996). (See Figure 3.5.) The state of the
acrobot is determined by four continuous state variables: two joint angles (θ1, θ2)
and corresponding velocities. Thus, the state the agent can be formally described
as s = (θ1, θ2, θ̇1, θ̇2). The goal is to control the acrobot so as to swing the end tip
(“feet”) above the horizontal by the length of the lower “leg” link. Torque may only
be applied to the second joint. The agent receives −1 reward until it reaches the goal,
at which point it receives a reward of 0. The frequency of action selection is set to 5
Hz, and the time step, ∆t = 0.05s, is used for numerical integration of the equations
describing the dynamics of the system. A discount factor of γ = 0.99 is used. The

Chapter 3. Learning Sparse Representations in Reinforcement Learning 32

equations of motion for Acrobot are,

θ̈1 = −d−1
1 (d2θ̈2 + φ2), (3.5a)

θ̈2 = −
(
m2l

2
c2 + I2 −

d2
2
d1

)−1 (
τ + d2

d1
φ1 − φ2

)
, (3.5b)

where d1, d2, φ1 and φ2 are defined as

d1 = m1l
2
c1 +m2l1lc2 cos(θ2) + I2, (3.6a)

d2 = m2
(
l2c2 + l1lc2 cos(θ2)

)
+ I2, (3.6b)

φ1 = −m2l1lc2θ̇1
2 sin(θ2)− 2m2l1lc2θ̇2θ̇1 sin(θ2)

+ (m1lc1 +m2l1)g cos(θ1 − π/2) + φ2,
(3.6c)

φ2 = m2lc2g cos(θ1 + θ2 − π/2). (3.6d)

The agent chooses between three different torque values, τ ∈ {−1, 0, 1}, with torque
only applied to the second joint. The angular velocities are bounded to θ1 ∈ [−4π, 4π]
and θ2 ∈ [−9π, 9π]. The values m1 = 1 and m2 = 1 are the masses of the links, and
l1 = 1m and l2 = 1m are the lengths of the links. The values lc1 = lc1 = 0.5m specify
the location of the center of mass of links, and I1 = I2 = 1kg m2 are the moments of
inertia for the links. Finally, g = 9.8m/s2 is the acceleration due to gravity. These
physical parameters are previously used in Sutton (1996).

In our simulation, each of the four state dimensions is divided over 20 uniformly
spaced ranges. To encode a state value for input to the network, a Gaussian distri-
bution with a peak value of 1, a standard deviation of 1/20, and a mean equal to the
given continuous state variable value was used to calculate the activity of each of the
21 inputs for that variable. Thus, the network had 84 total inputs.

The network had three output units, each corresponding to one of the possible
values of torque applied: clockwise, neutral, or counter-clockwise. Between the 84
inputs and the 3 output units was a layer of 8400 hidden units for the kWTA network
and the regular backpropagation network. For the kWTA network, only 10%, or 840,
of the hidden units were allowed to be highly active.

The Acrobot agent explores its environment in episodes. Each episode of learning
starts with the Acrobot agent hanging straight down and at rest (i.e., s = (0, 0, 0, 0)).
The episode ends when the agent reaches the goal location or after the maximum
of T = 2000 actions are taken. At the beginning of a simulation, the exploration
probability, ε, is set to a relatively high value of 0.05. When the agent first reaches
the goal, the value of ε starts to decrease, being reduced by 0.1% each time the goal
location is reached. Thus, as the agent becomes increasingly successful at reaching
the goal location, the exploration probability, ε, approaches to lower bound of 0.0001.
The agent continues to explore the environment, one episode after another, until the
average absolute value of δ is below 0.05 and the goal location is consistently reached,
or a maximum of 200, 000 episodes are completed. A small learning rate α = 0.0001
was used and stayed fixed during the learning.

Chapter 3. Learning Sparse Representations in Reinforcement Learning 33

3.5 Results and Discussions
We compared the performance of our kWTA neural network with that produced by
using a standard backpropagation network (Regular) with identical parameters. We
also examined the performance of a linear network (Linear), which had no hidden
units but only complete connections from all input units directly to the four output
units (see Figure 3.2).

3.5.1 The puddle-world task
Figure 3.6(a)-(c) show the learned value function (plotted as maxaQ(s, a) for each
location, s, for representative networks of each kind. Also, Figure 3.6(d)-(f) display
the learned policy at the end of learning. Finally, we show learning curves displaying
the episode average value of the TD Error, δ, over episodes in Figure 3.6(g)-(i).

In general, the Linear network did not consistently learn to solve this problem,
sometimes failing to reach the goal or choosing paths through puddles. The Regular
backpropagation network performed much better, but its value function approxima-
tion still contained sufficient error to produce a few poor action choices. The kWTA
network, in comparison, consistently converged on good approximations of the value
function, almost always resulting in optimal paths to the goal.

For each network, we quantitatively assessed the quality of the paths produced
by agents using the learned value function approximations. For each simulation, we
froze the connection weights (or, equivalently, set the learning rate to zero), and we
sequentially produced an episode for each possible starting location, except for loca-
tions inside of the puddles. The reward accumulated over each episode was recorded,
and, for each episode that ended at the goal location, we calculated the sum squared
deviation of these accumulated reward values from that produced by an optimal agent
(identified using SARSA with a large look-up table for the value function). The mean
of this squared deviation measure, over all successful episodes, was recorded for each
of the 20 simulations run for each of the 3 network types. The means of these val-
ues, over 20 simulations, are displayed in Figure 3.7. The backpropagation network
had significantly less error than the linear network (t(38) = 4.692; p < 0.001), and
the kWTA network had significantly less error than the standard backpropagation
network (t(38) = 6.663; p < 0.001). On average, the kWTA network deviated from
optimal performance by less than one reward point.

We also recorded the fraction of episodes which succeeded at reaching the goal for
each simulation run. The mean rate of goal attainment, across all non-puddle start-
ing locations, for the linear network, the backpropagation network, and the kWTA
network were 93.3%, 99.0%, and 99.9%, respectively. Despite these consistently high
success rates, the linear network exhibited significantly more failures than the back-
propagation network (t(38) = 2.306; p < 0.05), and the backpropagation network ex-
hibited significantly more failures than the kWTA network (t(38) = 2.205; p < 0.05).

Chapter 3. Learning Sparse Representations in Reinforcement Learning 34

Linear Regular kWTA

Va
lu

es

1

Estimate of Value Function

y
0.5

01
0.5
x

0
0

50

100
−
Q

m
ax

1

Estimate of Value Function

y
0.5

01x

0.5
0
0
50
100

−
Q

m
ax

1

Estimate of Value Function

y
0.5

01
0.5
x

0
0
50
100

−
Q

m
ax

(a) (b) (c)

Po
lic

y

x
0 0.5 1

y

0

0.5

1
Policy map

x
0 0.5 1

y

0

0.5

1
Policy map

x
0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Policy map

(d) (e) (f)

T
D

Er
ro

r

Episodes
0 10,000 20,000 30,000 40,000

m
ea
n
(δ
)

-5

-4

-3

-2

-1

0
Mean value of δ allover each episode

Episodes
0 10,000 20,000 30,000 40,000

m
ea
n
(δ
)

-5

-4

-3

-2

-1

0

Episodes
0 10,000 20,000 30,000 40,000

m
ea
n
(δ
)

-5

-4

-3

-2

-1

0
Mean value of δ allover each episode

(g) (h) (i)

Figure 3.6: The performance of various learned value function approximators may be
compared in terms of their success at learning the true value function, the resulting
action selection policy, and the amount of experience in the environment needed to
learn. The approximate of the state values, expressed as maxa Q(s, a) for each state,
s is given. (a) Values of states for the Linear network. (b) Values of states for the
Regular network. (c) Values of state for kWTA network. The actions selected at
a grid of locations is shown in the middle row. (d) Policy of states derived from
Linear network. (e) Policy of states derived from Regular network. (f) Policy of
states derived from kWTA network. The learning curve, showing the TD Error over
learning episodes, is shown on the bottom. (g) Average TD error for training Linear
network. (h) Average TD error for training Regular network. (i) Average TD error
for training kWTA network.

Chapter 3. Learning Sparse Representations in Reinforcement Learning 35

Linear BP kWTA

M
S
E

of
R
ew

ar
d

0

5

10

15

20

25

30

35

40
*

*
t(38) = 2.205; p < 0.005

t(38) = 4.692; p < 0.001

Success rate

93.3%

Success rate

99.9%

Success rate

99.0%

Regular

Figure 3.7: Averaged over 20 simulations of each network type, these columns display
the mean squared deviation of accumulated reward from that of optimal performance.
Error bars show one standard error of the mean.

3.5.2 The mountain-car task
Figure 3.8 (a)-(c) show the value function (plotted as maxaQ(s, a) for each location,
s) for representative networks of each kind. In the middle row of Figure 3.8(d)-(f),
we show the learning curves, displaying the episode average value of the TD Error,
δ, over training episodes, and also the number of time steps needed to reach the
goal during training episodes. In the last row, we display the results of testing the
performance of the networks. The test performances were collected after every epoch
of 1000 training episodes, and there were no changes to the weights and no exploration
during the testing phase. The value function for the kWTA network is the closest
numerically to optimal Q-table results, and the policy after training for the kWTA
network is the most stable.

3.5.3 The Acrobot task
In the first row of Figure 3.9(a)-(c), the episode average value of the TD Error, δ,
over training episodes, and also the number of time steps needed to reach the goal
during training episodes are shown for different networks during the training phase.
In the last row of Figure 3.9(d)-(f), we display the results of testing performance of
the networks for the three network architectures. At testing time, any changes to the
weights were avoided, and there was no exploration.

From these results, we can see that only the kWTA network could learn the
optimal policy. Both the Linear network and the Regular backpropagation network
failed to learn the optimal policy for the Acrobot control task.

Chapter 3. Learning Sparse Representations in Reinforcement Learning 36

Linear Regular kWTA

Va
lu

es 0.07-20

-1.5

0

20

-0.07

−
Q
m
a
x

0.6

40

60

80

x ẋ

0.07
0

-1.5

20

-0.07

40

−
Q
m
a
x

0.6

60

80

x ẋ

0.07
0

-1.5

20

-0.07

40

−
Q
m
a
x

0.6

60

80

x ẋ

(a) (b) (c)

Tr
ai

n
pe

rf
or

m
an

ce

0 50000 100000 150000 200000
-100

0

100

m
ea
n
(δ
)

0 50000 100000 150000 200000

Episodes

0

2000

4000

S
te
p
s

0 50000 100000 150000 200000
-100

0

100

m
ea
n
(δ
)

0 50000 100000 150000 200000

Episodes

0

2000

4000

S
te
p
s

0 50000 100000 150000 200000
-100

0

100

m
ea
n
(δ
)

0 50000 100000 150000 200000

Episodes

0

2000

4000

S
te
p
s

(d) (e) (f)

Te
st

pe
rf

or
m

an
ce

0 50000 100000 150000 200000
-1

0

1

m
ea
n
(δ
)

0 50000 100000 150000 200000

Episodes

0

2000

4000

S
te
p
s

0 50000 100000 150000 200000
-1

0

1

m
ea
n
(δ
)

0 50000 100000 150000 200000

Episodes

0

2000

4000

S
te
p
s

0 50000 100000 150000 200000
-1

0

1

m
ea
n
(δ
)

0 50000 100000 150000 200000

Episodes

0

2000

4000

S
te
p
s

(g) (h) (i)

Figure 3.8: The performance of various networks trained to perform the Mountain-
car task. The top row contains the approximate value of states after training
(maxaQ(s, a)). (a) Values approximated from Linear network. (b) Values approx-
imated from Regular BP network. (c) Values approximated from kWTA network.
The middle row shows two statistics over training episodes: the top subplot shows
the average value of the TD Error, δ, and the bottom subplot shows the number of
time steps during training episodes. Average of TD Error and total steps in training
for (d) Linear (e) Regular (f) kWTA is given. The last row reports the testing per-
formance, which was measured after each epoch of 1000 training episodes. During
the test episodes the weight parameters were frozen and no exploration was allowed.
Average of TD Error and the total steps for (g) Linear (h) Regular (i) kWTA are
given.

Chapter 3. Learning Sparse Representations in Reinforcement Learning 37

Training Performance Test Performance

Li
ne

ar

0 50000 100000 150000 200000

m
ea

n
(δ

)
in

 e
p

is
o

d
e

-1

-0.5

0

0.5
Test with frozen weights for linearNN

Episode number

0 50000 100000 150000 200000

n
u

m
b

er
 o

f
st

ep
s

0

100

200

300

0 50000 100000 150000 200000

m
ea

n
(δ

)
in

 e
p

is
o

d
e

-1

-0.5

0

0.5
Test with frozen weights for linearNN

Episode number

0 50000 100000 150000 200000

n
u

m
b

er
 o

f
st

ep
s

0

100

200

300

(a) (d)

R
eg

ul
ar

0 50000 100000 150000 200000

m
ea

n
(δ

)
in

 e
p

is
o

d
e

-1

0

1
Performance for regularBPNN

Episode number

0 50000 100000 150000 200000

n
u
m

b
er

 o
f

st
ep

s

0

1000

2000

0 50000 100000 150000 200000
m

ea
n

(δ
)

in
 e

p
is

o
d

e

-1

-0.5

0

0.5
Test with frozen weights for regularBPNN

Episode number

0 50000 100000 150000 200000

n
u

m
b

er
 o

f
st

ep
s

0

100

200

300

(b) (e)

k
W

TA

0 50000 100000 150000 200000

m
ea

n
(δ

)
in

 e
p

is
o

d
e

-1

0

1
Performance for kwtaNN

Episode number

0 50000 100000 150000 200000

n
u
m

b
er

 o
f

st
ep

s

0

1000

2000

0 50000 100000 150000 200000

m
ea

n
(δ

)
in

 e
p

is
o

d
e

-1

-0.5

0

0.5
Test with frozen weights for kwtaNN

Episode number

0 50000 100000 150000 200000

n
u

m
b

er
 o

f
st

ep
s

0

100

200

300

(c) (f)

Figure 3.9: The performance of various networks trained to solve the Acrobot control
task. The top row results correspond to training performance of the SARSA Algo-
rithm 1. The average TD Error (top subplot) and the total number of steps (bottom
subplot) for each episode of learning are given for (a) Linear (b) Regular and (c)
kWTA neural networks are given. The bottom row are the performance results for
the testing that was measured after every epoch of 1000 training episodes in which
the weight parameters were frozen and no exploration was allowed. Average of TD
error and total steps for (d) Linear (e) Regular (f) kWTA are given.

Chapter 3. Learning Sparse Representations in Reinforcement Learning 38

3.6 Future Work
Using sparse conjunctive representation of the agent’s state not only can help in the
solving of the simple reinforcement learning tasks, but it might also help improve the
learning of some large-scale tasks, too. In the future, we will extend this work to the
deep reinforcement learning framework, where the value function is approximated by
a deep Convolutional Neural Network (CNN). The kWTA mechanism can be used
in the fully connected layers of the CNN in order to generate sparse representations
using the lateral inhibition like mechanism. We anticipate that employing the kWTA
mechanism to generate sparse conjunctive representations will lead to faster and more
robust learning in complicated deep RL tasks.

A deep CNN equipped with a k-Winners-Take-All mechanism in the fully con-
nected layers can also be used for supervised learning. This is particularly interesting
in applications such as image recognition, when two images look similar (they share
similar features), but they belong to different classes. We hypothesize that the con-
junctive sparse representation generated by kWTA can learn subtle differences, where
regular CNN may fail to learn.

3.7 Conclusions
Inspired by the lateral inhibition that appears in cortical areas, we implemented a
state-action value function approximator that utilizes a k-Winners-Take-All mech-
anism (O’Reilly, 2001). The proposed method solves the previously impossible-to-
solve control tasks. The simulation results demonstrate that a mechanism for learning
sparse conjunctive codes for the agent’s sensory state can help overcome learning prob-
lems observed when using TD Learning with a value function approximator (Rafati
and Noelle, 2015, 2017). Artificial neural networks can be forced to produce such
sparse codes over their hidden units by including a process akin to the sort of pooled
lateral inhibition that is ubiquitous in the cerebral cortex. In this way, these sim-
ulation results both support our method for improving reinforcement learning and
also lend preliminary support to the hypothesis that the midbrain dopamine system,
along with associated circuits in the basal ganglia, do, indeed, implement a form of
TD Learning, and the observed problems with TD learning do not arise in the brain
due to the encoding of sensory state information in circuits that make use of lateral
inhibition.

Chapter 4

Learning Representations in
Model-Free Hierarchical
Reinforcement Learning

Abstract
Common approaches to Reinforcement Learning (RL) are seriously challenged by
large-scale applications involving huge state spaces and sparse delayed reward feed-
back. Hierarchical Reinforcement Learning (HRL) methods attempt to address this
scalability issue by learning action selection policies at multiple levels of temporal
abstraction. Abstraction can be had by identifying a relatively small set of states
that are likely to be useful as subgoals, in concert with the learning of corresponding
skill policies to achieve those subgoals. Many approaches to subgoal discovery in HRL
depend on the analysis of a model of the environment, but the need to learn such
a model introduces its own problems of scale. Once subgoals are identified, skills
may be learned through intrinsic motivation, introducing an internal reward signal
marking subgoal attainment. In this chapter, we present a novel model-free method
for subgoal discovery using incremental unsupervised learning over a small memory
of the most recent experiences (trajectories) of the agent. When combined with an
intrinsic motivation learning mechanism, this method learns both subgoals and skills,
based on experiences in the environment. Thus, we offer an original approach to
HRL that does not require the acquisition of a model of the environment, suitable
for large-scale applications. We demonstrate the efficiency of our method on two RL
problems with sparse delayed feedback: a variant of the rooms environment and the
first screen of the ATARI 2600 Montezuma’s Revenge game.

39

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 40

4.1 Introduction
The reinforcement learning problem suffers from serious scaling issues. Methods such
as transfer learning (Ammar et al., 2012; Singh, 1992; Taylor and Stone, 2009), and
Hierarchical Reinforcement Learning (HRL) attempt to address these issues (Barto
and Mahadevan, 2003; Hengst, 2010; Dayan and Hinton, 1992; Dietterich, 2000).
HRL is an important computational approach intended to tackle problems of scale by
learning to operate over different levels of temporal abstraction (Sutton et al., 1999;
Parr and Russell, 1997; Krishnamurthy et al., 2016; Stolle and Precup, 2002). The
acquisition of hierarchies of reusable skills is one of the distinguishing characteristics
of biological intelligence (Botvinick et al., 2009; Diuk et al., 2013; Badre et al., 2010),
and the learning of such hierarchies is an important open problem in computational
reinforcement learning. The development of robust HRL methods will provide a
means to acquire relevant knowledge at multiple levels of abstraction, potentially
speeding learning and supporting generalization.

A number of approaches to HRL have been suggested. One approach focuses on
action sequences, subpolicies, or “options” that appear repeatedly during the learning
of a set of tasks (Sutton et al., 1999; Levy and Shimkin, 2011; Fox et al., 2017;
Bacon et al., 2017; Stolle and Precup, 2002; Bakker and Schmidhuber, 2004). Such
frequently reused subpolicies can be abstracted into skills that can be treated as
individual actions at a higher level of abstraction. A somewhat different approach to
temporal abstraction involves identifying a set of states that make for useful subgoals
(Goel and Huber, 2003; Simsek et al., 2005; McGovern and Barto, 2001; Machado
and Bowling, 2016). This introduces a major open problem in HRL: that of subgoal
discovery.

A variety of researchers have proposed approaches to identifying useful subpolicies
and reifying them as skills (Pickett and Barto, 2002; Thrun and Schwartz, 1995; Man-
nor et al., 2004; Stolle and Precup, 2002). For example, Sutton et al. (1999) proposed
the options framework, which involves abstractions over the space of actions. At each
step, the agent chooses either a one-step “primitive” action or a “multi-step” action
policy (an option). Each option defines a policy over actions (either primitive or
other options) and comes to completion according to a termination condition. Other
researchers have focused on identifying subgoals — states that are generally useful to
attain — and learning a collection of skills that allow the agent to efficiently reach
those subgoals. Some approaches to subgoal discovery maintain the value function
in a large look-up table (Sutton et al., 1999; Goel and Huber, 2003; Simsek et al.,
2005; McGovern and Barto, 2001), and most of these methods require building the
state transition graph, providing a model of the environment and the agents possi-
ble interactions with it (Machado et al., 2017; Simsek et al., 2005; Goel and Huber,
2003; Mannor et al., 2004; Stolle and Precup, 2002). Formally, the state transition
graph is a directed graph G = (V,E) with a set of vertices, V ⊆ S and set of edges
E ⊆ A(S), where S is the set of states and A(S) is the set of allowable actions
when in a given state. Since actions typically modify the state of the agent, each

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 41

directed edge, (s, s′) ∈ E, indicates an action that takes the agent from state s to
state s′. In nondeterministic environments, a probability distribution over subsequent
states, given the current state and an action, p(s′|s, a), is maintained as part of the
model of the environment. One method of this kind that was applied to a somewhat
larger scale task — the first screen of the ATARI 2600 game called Montezuma’s
Revenge — is that of Machado and Bowling (2016). This method constructs the
combinatorial transition graph Laplacian matrix, and an eigen-decomposition of that
matrix produces candidate subgoals. While it was shown that some of these candi-
dates make for useful subgoals, only heuristic domain-sensitive methods have been
reported for identifying useful subgoals from the large set of candidates (e.g., thou-
sands). Thus, previously proposed subgoal discovery methods have provided useful
insights and have been demonstrated to improve learning, but there continue to be
challenges with regard to scalability and generalization. Scaling to large state spaces
will generally mandate the use of some form of nonlinear function approximator to
encode the value function, rather than a look-up table. More importantly, as the
scale of a reinforcement learning problem increases, the tractability of obtaining a
good model of the environment, capturing all relevant state transition probabilities,
precipitously decreases.

Once useful subgoals are discovered, an HRL agent should be able to learn the
skills to attain those subgoals through the use of intrinsic motivation — artificially
rewarding the agent for attaining selected subgoals (Singh et al., 2010; Vigorito and
Barto, 2010). In such systems, knowledge of the current subgoal is needed to estimate
future intrinsic reward, resulting in value functions that consider subgoals along with
states (Vezhnevets et al., 2017). The nature and origin of “good” intrinsic reward
functions is an open question in reinforcement learning, however, and a number of
approaches have been proposed. Singh et al. (2010) explored agents with intrinsic
reward structures in order to learn generic options that can apply to a wide variety of
tasks. Value functions have also been generalized to consider goals along with states
(Vezhnevets et al., 2017). Such a parameterized universal value function, q(s, g, a;w),
integrates the value functions for multiple skills into a single function taking the
current subgoal, g, as an argument.

Recently, Kulkarni et al. (2016) proposed a scheme for temporal abstraction that
involves simultaneously learning options and a hierarchical control policy in a deep
reinforcement learning framework. Their approach does not use separate Q-functions
for each option, but, instead, treats the option as an argument. This method lacks
a technique for automatic subgoal discovery, however, forcing the system designer to
specify a set of promising subgoal candidates in advance. The approach proposed in
this chapter is inspired by Kulkarni et al. (2016), which has advantages in terms of
scalability and generalization, but it incorporates automatic subgoal discovery.

It is important to note that model-free HRL, which does not require a model of
the environment, still often requires the learning of useful internal representations of
states. When learning the value function using a nonlinear function approximator,
such as a deep neural network, relevant features of states must be extracted in order

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 42

to support generalization at scale. A number of methods have been explored for
learning such internal representations during model-free RL (Tesauro, 1995; Rafati
and Noelle, 2017; Mnih et al., 2015), and deep model-based HRL (Kulkarni et al.,
2016; Li et al., 2017; Lyu et al., 2019). However, selecting the right representation is
still an open problem (Maillard et al., 2011).

In this chapter, we seek to address major open problems in the integration of
internal representation learning, temporal abstraction, automatic subgoal discovery,
and intrinsic motivation learning, all within the model-free HRL framework (Rafati
and Noelle, 2019a). We propose and implement efficient and general methods for sub-
goal discovery using unsupervised learning and anomaly (outlier) detection (Rafati
and Noelle, 2019c). These methods do not require information beyond that which is
typically collected by the agent during model-free reinforcement learning, such as a
small memory of recent experiences (agent trajectories). Our methods are fundamen-
tally constrained in three ways, by design. First, we remain faithful to a model-free
reinforcement learning framework, eschewing any approach that requires the learn-
ing or use of an environment model. Second, we are devoted to integrating subgoal
discovery with intrinsic motivation learning, and temporal abstraction. Specifically,
we conjecture that intrinsic motivation learning can increase appropriate state space
coverage, supporting more efficient subgoal discovery. Lastly, we focus on subgoal
discovery algorithms that are likely to scale to large reinforcement learning tasks.
The result is a unified model-free HRL algorithm that incorporates the learning of
useful internal representations of states, automatic subgoal discovery, intrinsic moti-
vation learning of skills, and the learning of subgoal selection by a “meta-controller”.
We demonstrate the effectiveness of this algorithm by applying it to a variant of the
rooms task (illustrated in Figure 4.12(a)), as well as the initial screen of the ATARI
2600 game called Montezuma’s Revenge (illustrated in Figure 4.17(a)).

4.2 Failure of RL in Tasks with Sparse Feedback
In an RL problem, the agent should implement a policy, π, from states, S, to possible
actions, A, to maximize its expected return from the environment (Sutton and Barto,
2017). At each cycle of interaction, the agent receives a state, s, from the environment,
takes an action, a, and one time step later, the environment sends a reward, r ∈ R,
and an updated state, s′. Each cycle of interaction, e = (s, a, r, s′) is called a transition
experience. The goal is to find an optimal policy that maximizes the expected value
of the return, i.e. the cumulative sum of future rewards, Gt = ∑T

t′=t γ
t′−trt′+1, where

γ ∈ [0, 1] is a discount factor, and T as a final step. It is often useful to define a
parametrized value function Q(s, a;w) to estimate the expected value of the return.
As described in Chapter 2, Q-learning is a Temporal Difference (model-free RL)
algorithm that attempts to find the optimal value function by minimizing the loss

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 43

function, L(w), which is defined over a recent experience memory, D:

L(w) , E(s,a,r,s′)∼D

[(
r + γmax

a′
Q(s′, a′;w)−Q(s, a;w)

)2
]
. (4.1)

Learning representations of the value function is challenging for tasks with sparse,
and delayed rewards, since in (4.1), r = 0 (or an undiagnostic constant value such as
r = −1) for most experiences. Even if the agent accidentally visits a rare rewarding
state, where r > 0, the experience replay mechanism often fails to learn the value of
those states (Mnih et al., 2015).

Another major problem in RL is the exploration-exploitation trade-off. Common
approaches, such as the ε-greedy method, are not sufficiently efficient in exploring
the state space to succeed on large-scale complex problems (Bellemare et al., 2016;
Vigorito and Barto, 2010). As a simple example, consider the task of navigation in the
4-room environment with a key and a car, shown in Figure 4.7 The agent is rewarded
for entering the grid square containing the key, and it is more substantially rewarded
for entering the grid square with the car after obtaining the key. The other states
are not rewarded. Learning even this simple task is challenging for a reinforcement
learning agent.

Our intuition, shared with other researchers, is that hierarchies of abstraction will
be critical for successfully solving problems of this kind. To be successful, the agent
should represent knowledge at multiple levels of spatial and temporal abstraction.
Appropriate abstraction can be had by identifying a relatively small set of states
that are likely to be useful as subgoals and jointly learning the corresponding skills of
achieving those subgoals, using intrinsic motivation.

4.3 Hierarchical Reinforcement Learning
In Hierarchical Reinforcement Learning, a central goal is to allow learning to happen
simultaneously on several levels of abstraction. As a simple illustration of the problem,
consider the task of navigation in the 4-room environment with a key and a car.

The 4-room is a grid-world environment, consisting of 4 rooms, as shown in Figure
4.1. These rooms are connected through doorways. The agent receives the most
reward if it navigates in this environment, finds a key, picks up the key, and moves
to a car. The agent is initialized in an arbitrary location in an arbitrary room. The
location of the key, the car, and the doorways are arbitrary and can vary. This is
a variant of the rooms task introduced by (Sutton et al., 1999). The agent receives
r = +10 reward for reaching the key and r = +100 if it moves to the car while
carrying the key. The agent can move either A ={North, South, East, West} on
each time step. Bumping to the wall boundaries is punished with a reward of r =
−2. There is no reward or punishment for exploring the space. Learning in this
environment with sparse feedback is challenging for a reinforcement learning agent.
To successfully generalize to different environment configurations, the agent should
represent knowledge at multiple levels of spatiotemporal abstraction. It should also

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 44

Figure 4.1: The rooms task with a key and a car. The agent should explore the
rooms to first find the key and then find the car. The key and the car can be
in any of the 4 rooms in any arbitrary locations. The agent moves either A =
{North, South, East,West} on each time step. The agent receives r = +10 reward
for getting the key and r = +100 if it reaches the car with the key. The blue objects
on the map — doorways, key, and car — are useful subgoals.

learn to explore the environment efficiently. The quality of the agent’s policy depends
critically on the location of the doorways, the key, and the car.

4.3.1 Subgoals vs. Options
Learning to obtain a subgoal is typically easier than learning the full task. Pursuing
a subtask of “go to room 2”, which is part of the solution to the full task, is much
easier than the 4-rooms task, itself. A subgoal, g, is a state that must be visited as
part of pursuing a major goal. The subspace G ⊆ S is called the goal space, and the
members of G are the candidate subgoals (or goals) that the RL agent might pursue
to solve the task. In this task, a good set of subgoals is G = {doorways, key, car}.
However, being able to pursue other sets of states can be useful in learning the task.
For example, learning how to move from room 2 to room 1 can be a useful skill, and
successful execution of this skill is marked by moving to a subset region of state space.
(See Figure 4.2.)

In some of the HRL literature the term “option” is used to describe a temporally

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 45

(a) (b)

Figure 4.2: (a) The state space S and the state of the agent st. The intrinsic goal
can be either reaching from st to a region or set of states, g1 ⊂ S, or to a single state
g2 ∈ S. (b) An option is a transition from a set of states to another set of states.

abstracted action (Machado and Bowling, 2016; Fox et al., 2017). The literature can
be confusing, however, as other researchers use this term to describe a subgoal — a
specific state in the state space. In this chapter, we use the former notion of option.
An option, oij, is a transition from one set of states, gi, to another, gj. For example,
going from room 1 to room 2 can be considered an option (i.e., an extended action).

4.3.2 Spatiotemporal Hierarchies
The rooms task has at least two types of hierarchical structure.

1. Spatial Hierarchy. The states have similarity structure in terms of belonging to
a certain room. This could be captured as a hierarchical relationship between
locations and rooms. For example, at the moment captured in Figure 4.1, the
key is located in relative location (xkey, ykey) in room 2, and the agent is in
relative location (xagent, yagent) in room 1.

2. Temporal Hierarchy. To solve the task, the agent first needs to get the key, and,
after accomplishing this subgoal, the agent should move to the car. Thus, the
temporal order of subgoals is another dimension of hierarchy.

4.3.3 Hierarchical Reinforcement Learning Subproblems
The rooms task has both clear skills and clear subgoals. To accomplish each temporal
subgoal g ∈ {doorways, key, car}, the agent needs to go to the corresponding
location of g. (See Figure 4.3.) Learning how to explore the state space to reach any
arbitrary location in the given room is a valuable skill. This skill could be reused
to reach any of a number of subgoals. This is often called spacing and it can be
accomplished through intrinsic motivation.

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 46

(a) (b) (c)

Figure 4.3: The rooms task requires the agent to be able to navigate and reach a
certain subgoal, g, from its current state. (a) Moving to a doorway. (b) Moving
to the key. (c) Moving to the car. Learning how to space the state space through
intrinsic motivation can facilitate learning.

One approach to solving the hierarchical reinforcement learning problem is to
break down the problem into the following three subproblems:

Subproblem 1: Learning a meta-policy to choose a subgoal. Learning to
operate at different levels of abstraction is essential in hierarchical reinforcement
learning. In this subproblem, the purpose is training a top-level controller to learn an
optimal meta-policy to choose a proper subgoal, gt, form set of candidate subgoals,
G, and deliver it to the lower-level controller. We refer to the top-level learner as
the meta-controller, and the lower-level learner is just called the controller (Kulkarni
et al., 2016). Formally, the objective is to find a mapping Π : S → G, which ideally is
an optimal meta-policy that maximizes the return. For example, in the rooms task
(Figure 4.1), it is expected that the meta-controller chooses a proper subgoal (i.e.
room 2) for the agent located in room 1.

Subproblem 2: Exploring the state space while learning subtaks through
intrinsic motivation. Intrinsic motivation refers to learning behavior that is driven
by internal rewards. A reinforcement learning agent can be intrinsically motivated to
explore its environment and learn about the effects of its actions. The skills learned
during this period of exploration are then reused to great effect later to solve many
unfamiliar problems very quickly. The agent is assigned to solve a task of reaching
to a subgoal, gt. Formally, the agent should learn an optimal policy π(st, gt) for all
possible (available) states, st ∈ S and for all subgoals, gt ∈ G. In particular, we
present algorithms for intrinsically motivated hierarchical exploration for temporal
difference learning. An example of intrinsic motivation is given in Figure 4.3. The
meta-controller (top-level learner) assigns a goal, gt, to the controller (lower-level
learner), and the controller should learn how to reach to different locations in the
room. Consequently, the agent learns how to navigate in the state space to reach an

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 47

arbitrary goal.

Subproblem 3: Subgoal discovery. In order to solve subproblems 1 and 2, a
proper set of subgoals, G, should be available. This require solving the subgoal dis-
covery problem which is one of major open problems in the hierarchical reinforcement
learning literature. Formally, we are interested in studying methods of learning to
discover the proper candidate subgoals, G, from the agent’s past experiences mem-
ory D. For example, a proper set of subgoals for the rooms task (see Figure 4.1)
include the location of doorways, the key and the car. When learning begins, the
subgoals are arbitrary, but once they are assigned to the controller, more experiences
can be gathered through the process of intrinsic motivation learning. We introduce
an unsupervised learning method that can discover the underlying structure in the
experience space and use the learned representation to discover a good set of subgoals.
Automatic subgoal discovery in model-free hierarchical reinforcement learning is an
open problem that is addressed in the proposed HRL framework.

4.4 Meta-controller/Controller Framework
A straightforward computational approach for temporal abstraction is proposed by
Kulkarni et al. (2016) in the meta-controller/controller framework. The agent in this
framework makes decisions at two levels of abstraction:

(a) The top level module (meta-controller) takes the state, st, as input and picks a
new subgoal, gt.

(b) The lower level module (controller) uses both the state (or a meta-state s̃t) and
the chosen subgoal to select actions, continuing to do so until either the subgoal
is reached or the episode is terminated.

If a subgoal is reached, the meta-controller then chooses another subgoal, and the
above steps (a-b) repeat. In this chapter, we focus on only two levels of hierarchy,
but the proposed methods can be expanded to greater hierarchical depth without loss
of generality.

As shown in Figure 4.4, the agent uses a two-level hierarchy consisting of a con-
troller and a meta-controller. At time step t, the meta-controller receives a state
observation, s = st, from the environment. It has a policy for selecting a subgoal,
g = gt, from a set of subgoals, G. The controller then selects actions in an effort
to attain the given subgoal. The objective function for the controller is to maximize
cumulative future intrinsic reward

G̃t =
t+T∑
t′=t

γt
′−tr̃t(g), (4.2)

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 48

Figure 4.4: The Meta-Controller/Controller framework for temporal abstraction. The
agent produces actions and receives sensory observations. Separate networks are
used inside the meta-controller and controller. The meta-controller looks at the raw
states and produces a policy over goals by estimating the value function Q(st, gt) (by
maximizing expected future extrinsic reward). The controller takes states as input,
along with the current goal, (st, gt), and produces a policy over actions by estimating
the value function q(st, gt, at) to accomplish the goal gt (by maximizing expected
future intrinsic reward). The internal critic checks if a goal is reached and provides
an appropriate intrinsic reward to the controller. The controller terminates either
when the episode ends or when gt is accomplished. The meta-controller then chooses
a new subgoal, and the process repeats. This architecture is adapted from Kulkarni
et al. (2016).

where T is the maximum length of internal episodes to accomplish the subtask of
reaching to subgoal g. Similarly, the objective of the meta-controller is to maximize
the cumulative extrinsic reward

Gt =
T∑
t′=t

γt
′−trt, (4.3)

where T is a final step. We can use two different Q functions to learn policies for the
controller and the meta-controller. The controller estimates the following Q values

q(s, g, a) = Eπag

[
G̃t|st = s, gt = g, at = a

]
, (4.4)

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 49

where g is the given subgoal in state s and πag = P (a|s, g) is the action policy.
Similarly, the meta-controller estimates the following Q values

Q(s, g) = Eπg

[
Gt|st = s, gt = g

]
, (4.5)

where πg is the policy over subgoals. For example the optimal meta-policy for the
rooms task is depicted in Figure 4.2 (b). It’s important to note that the meta-
controller experiences transitions, (st, gt, Gt:t+T , gt+T), at a slower time-scale than the
controller’s transitions, (st, at, gt, r̃t, st+1). Note that Gt:t+T is the return (cumulative
external reward) in Equation 4.3 for one episode of the controller with a length T .

In our implementation, the policy arises from estimating the value of each sub-
goal, Q(s, g;W), and selecting the goal of highest estimated value. With the current
subgoal selected, the controller uses its policy to select an action, a ∈ A, based on
the current state, s, and the current subgoal, g. In our implementation, this policy
involves selecting the action that results in the highest estimate of the controller’s
value function, q(s, g, a;w). Actions continue to be selected by the controller while
an internal critic monitors the current state, comparing it to the current subgoal, and
delivering an appropriate intrinsic reward, r̃, to the controller on each time step. Each
transition experience, (s, g, a, r̃, s′), is recorded in the controller’s experience memory
set, D1, to support learning. When the subgoal is attained, or a maximum amount
of time has passed, the meta-controller observes the resulting state, st′ = st+T+1,
and selects another subgoal, g′ = gt+T+1, at which time the process repeats, but not
before recording a transition experience for the meta-controller, (s, g,G, st′) in the
meta-controller’s experience memory set, D2. The parameters of the value function
approximators are adjusted based on the collections of recent experiences.

For training the meta-controller value function, we minimize a loss function based
on the reward received from the environment:

L(W) , E(s,g,G,st′)∼D2

[(
G+ γmax

g′
Q(st′ , g′;W)−Q(s, g;W)

)2]
, (4.6)

where G = ∑t+T
t′=t γ

t′−trt′ is the accumulated external reward (return) between the
selection of consecutive subgoals. The term, Y = G+γmaxg′ Q(st′ , g′;W), in (4.6) is
the target value for the expected return at the time that the meta-controller selected
subgoal g. The controller improves its subpolicy, π(a|s, g), by learning its value
function, q(s, g, a;w), over the set of recorded transition experiences. The controller
updates its value function approximator parameters, w, so as to minimize its loss
function:

L(w) , E(s,g,a,r̃,s′)∼D1

[(
r̃ + γmax

a′
q(s′, g, a′;w)− q(s, g, a;w)

)2]
. (4.7)

The hierarchical reinforcement learning algorithm for meta-controller and con-
troller learning is given in Algorithm 7.

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 50

Algorithm 7 Meta-Controller and Controller Learning
Specify Subgoals space G
Initialize w in q(s, g, a;w)
Initialize W in Q(s, g;W).
Initialize experience memories D1 and D2
for episode = 1, . . . ,M do

Initialize state s0 ∈ S, s← s0
G← 0
g ←EPSILON-GREEDY(Q(s,G;W), ε2)
repeat for each step t = 1, . . . , T

compute q(s, g, a;w)
a←EPSILON-GREEDY(q(s, g,A;w), ε1)
Take action a, observe s′ and external reward r
Compute intrinsic reward r̃ from internal critic
Store controller’s intrinsic experience, (s, g, a, r̃, s′) to D1
Sample J1 ⊂ D1 and compute ∇L
Update controller’s parameters, w ← w − α1∇L
Sample J2 ⊂ D2 and compute ∇L
Update meta-controller’s parameters, W ←W − α2∇L
s← s′, G← G+ r
Decay exploration rate of controller ε1

until s is terminal or subgoal g is attained
Decay exploration rate of meta-controller ε2
Store meta-controller’s experience, (s0, g, G, s

′) to D2
end for

4.5 Intrinsic Motivation Learning
Intrinsic motivation learning is the core idea behind the learning of value functions in
the meta-controller and the controller. In some tasks with sparse delayed feedback, a
standard RL agent cannot effectively explore the state space so as to have a sufficient
number of rewarding experiences to learn how to maximize rewards. In contrast, the
intrinsic critic in our HRL framework can send much more regular feedback to the
controller, since it is based on attaining subgoals, rather than ultimate goals. As an
example, our implementation typically awards an intrinsic reward of +1 when the
agent attains the current subgoal, g, and −1 for any other state transition. Success-
fully solving a difficult task not only depends on such an intrinsic motivation learning
mechanism, but also on the meta-controller’s ability to learn how to choose the right
subgoal for any given state, s, from a set of candidate subgoals. Indeed, identifying
a good set of candidate subgoals is an additional prerequisite for success.

Developing skills through intrinsic motivation has at least two benefits: (1) ex-
ploration of large scale state spaces, and (2) enabling the reuse of skills in varied
environments. Navigation in the rooms task requires the agent to learn the skills

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 51

Figure 4.5: Grid-world task with a dynamic goal. At beginning of each episode an
oracle chooses an arbitrary goal, g ∈ S. The agent is initialized in a random location.
On each time step, the agent has four action choices, A = {North, South, East,
West}. The agent receives r̃ = +1 reward for successful episodes, reaching the goal,
g. Bumping into the wall produces a reward of r̃ = −2. There is no external reward
or punishment from the environment for exploring the space.

to reach the doorways, key, and car (see Figure 4.3). These skills are acquired by
learning to achieve subgoals that are provided by the meta-controller. The spacing of
the state space can be done as a pretraining step or simultaneously with meta-policy
training. In any case, a goal should be provided to the controller. This goal can be
a random state or a region of state space (see Figure 4.2)). For now, we assume that
the subgoal, g ∈ G, is provided by an oracle (standing in for the meta-controller), and
we focus only on learning to achieve this subgoal. The controller receives the state,
st, and subgoal, gt, as inputs and takes an action, at. This results in the sensing of
the next state and the receipt of an intrinsic reward signal, r̃t+1, from the internal
critic. (See Figure 4.4.) The subgoal, gt, remains the same for some time, T . There
have been some studies concerning the appropriate structure of the intrinsic reward.
We use the following form

r̃t+1 =

min(rt+1,−1) if st+1 is not terminal
+1 if st+1 achieves the goal, gt

(4.8)

Other intrinsic reward functions might be considered. Indeed, the nature and origin
of good intrinsic reward functions is an open question in reinforcement learning. As
an attempt to solve Subproblem 1, we try to solve the task of navigation in a grid-
world given a subgoal location, g. (See Figure 4.5.) For intrinsic motivation we can
define a reward function like that above in Equation 4.8. The algorithm for intrinsic
motivation learning for a random meta-controller is given in Algorithm 8.

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 52

Algorithm 8 Intrinsic Motivation Learning
Specify Subgoals space G
Initialize w in q(s, g, a;w)
Initialize controller’s experience memory, D1
Initialize agent’s experience memory, D
for episode = 1, . . . ,M do

Initialize state s0 ∈ S, s← s0
Select a random subgoal g from G
repeat for each step t = 1, . . . , T

compute q(s, g, a;w)
a←EPSILON-GREEDY(q(s, g,A;w), ε1)
Take action a, observe s′ and external reward r
Compute intrinsic reward r̃ from internal critic
Store controller’s intrinsic experience, (s, g, a, r̃, s′) to D1
Store agent’s experience, (s, a, s′, r) to D
Sample J1 ⊂ D1 and compute ∇L
Update controller’s parameters, w ← w − α1∇L
s← s′

Decay exploration rate of controller ε1
until s is terminal or subgoal g is attained

end for

4.6 Experiment on Intrinsic Motivation Learning
Here, we want to show why intrinsic motivation can be useful through transferring
knowledge and reusing skills. It is important to note that, we trained an agent in a
single room (a grid-world environment) to learn the navigation task (see Figure 4.5).
In the original rooms task in Figure 4.1, there are walls between rooms and specific
doorways between rooms. We assume that there is an oracle in the meta-controller
that provides the subgoals and a transformation from the real state to the input
state to the state-goal network in Figure 4.6. We make this assumption here for the
purpose of simplicity in the implementation and in order to prove the advantages of
the intrinsic motivation in hierarchical reinforcement learning. We will revisit the
intrinsic motivation problem once again in Section 4.8 and solve the rooms task using
a Unified Model-Free HRL framework, without having access to the mentioned oracle.
For now, let’s assume that there is an oracle (instead of a meta-controller) that can
transform the real external state of the agent in the rooms task into the location of
the agent in the current room, providing this transformed location as the state-goal
network input. This makes it possible to reuse the learned navigation skill to solve
the rooms task (which is consists of four rooms).

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 53

4.6.1 Training the State-Goal Value Function
Here, we introduce the neural network architecture that we use to approximate
q(s, g, a;w) while training the controller depicted in Figure 4.6.

Figure 4.6: The state-goal neural network architecture used to approximate the value
function for the controller, q(s, g, a;w). The function takes the state, st, and the
goal, gt, as inputs. The first layer produces the Gaussian representation separately
for st and gt. The state representation is connected fully to the hidden layer, and
the k-Winners-Take-All mechanism produces a sparse representation for st. The goal
representation is connected only to the corresponding row of units. We assume that
an oracle in the meta-controller transform the state in rooms task to a proper state
for the state-goal netwrok that is trained on the navigation in the gridworld (single
room) task.

The controller Q-function, q(s, g, a;w), takes the state, st, and the goal, gt, as
inputs. The first layer produces the Gaussian representation separately for st and
gt. Let’s denote the Gaussian representation of st by ŝt and the goal one by ĝt. The
Gaussian representation for st is similar to the one discussed in Chapter 3. The state
input, ŝt, is connected fully to the hidden layer, with the connection weight matrix
being w(1). The k-Winners-Take-All mechanism (10% of hidden units) produces a
sparse representation for the state, st. The subgoal input, ĝt, is connected to the

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 54

hidden layer with a gate layer. This mechanism was included in hopes of avoiding
catastrophic interference during reinforcement learning. The hidden layer is connected
fully to the output units, with the weight matrix being w(2). The network is trained
in a manner similar to standard backpropagation, with a forward pass determining
activations and a backward pass performing error credit assignment. This training
process is summarized in Algorithm 9. The grid-world room is discretized into 5× 5
windows. The number of the hidden units in each row of w(1) is 50 and the total
number of hidden units are 1250 (considering that there are 25 columns for each
row). We assume that the oracle standing in for the meta-controller handles the
transformation of the state in the rooms task to the input for the state-goal network.

Algorithm 9 Forward pass, and backpropagation for network in Figure 4.6
Forward pass. Computing q(s, g, a;w)

initialize qoutput ←zeros-like(a)
compute ŝ, Gaussian representation of s
compute ĝ Gaussian representation of subgoal g
find idg, effective gates indices for which ĝ > 0.1
compute net input matrix for idg, net = w

(1)
idg
ŝ

for all i in idg do
compute netikWTA ←kWTA(neti, k)
compute activity hi ← sigmoid(netikWTA)
compute qi = w

(2)
i hi

qoutput ← qoutput + qi

end for
return qoutput

Backpropagation. Updating w given TD error δ.
for all i in idg do

compute propagated error for hidden units δij ← δw
(2)
i,a � hi � (1− hi)

w
(2)
i,a ← w(2)

a + αδhi

w
(1)
i ← w

(1)
i + αŝδij

end for

4.6.2 Intrinsic Motivation Performance Results
We tested the performance of our approach in the context of a dynamic rooms envi-
ronment, with the agent rewarded for solving the key-car grid world task. We used
the four following specific tasks to test the learning performance.

The agent was able to move in a two-dimensional grid world environment, con-
taining one key and one car. The agent’s location was bounded to be within a 2D
Cartesian space of size [0, 1] × [0, 1]. In the full task, as previously described, the

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 55

agent received the most reward if it first moved to the key and then moved to the car.
In this version of the task, the locations of the key and the car are randomly selected,
changing dynamically across training episodes. The agent received no reward or pun-
ishment for exploring the space, with the exception of a reward of r = −2 if the agent
bumped into a wall. Positive rewards were different for different variants of the gen-
eral task. The agent received complete sensory information of the entire environment
(rather than just its own location), including the relative location of the key, the car,
and the relative location of the agent, itself in the room. This additional information
was used by the oracle to select the subgoals. Initially, the agent had no semantic
knowledge about the objects in the environment. For example, it did not know that,
in order to reach the car, it must grab the key first. This situation is illustrated in
Figure 4.7(b). The agent’s internal controller used q(s, g, a;w) to select an action,
at, based on the ε-greedy policy. When tested, however, no exploration was allowed,
so the policy for a given g can be obtained as πag(s, g) = arg maxa q(s, g, a;w). At
regular intervals during training, we tested the ability of the controller to reach the
key, and the car locations in four tasks.

• Key Task, Hard Placement. In this simplified version of the task, the agent
was trained to move to the key, producing a policy, πag, for reaching a randomly
located goal g (key). This is illustrated in Figure 4.7(a). For each starting s ∈ S,
a random goal, g, was assigned and the cumulative reward was obtained. We
report the average reward scores and the average success percentage in Figure
4.8 (a) and (b), respectively.

• Key Task, Easy Placement. This version of the task is the same as the last,
except that the goal, g, was always randomly placed in a location adjacent to
the starting state, s. (See Figure 4.7 (a).) We report the average reward scores
and the average success percentage in Figure 4.8 (c) and (d), respectively.

• Key-Car Task, Hard Placement. In this version of the task, both the
key, gkey, and the car, gcar, were randomly placed. The agent received positive
reward when the agent moved to the key (+10) and subsequently moved to the
car (+100). (See Figure 4.7 (b).) We report the average scores and the average
success percentage in Figure 4.9 (a) and (b), respectively.

• Key-Car Task, Easy Placement. This version of the task is the same as the
last, except that the key was always located at (0, 0), and the car was always
located at (1, 1). We report the average reward scores and the average success
percentage in Figure 4.9 (c) and (d), respectively.

4.6.3 Reusing Learned Skills
Spacing the state space, S, through intrinsic motivation enables efficient learning for
hierarchical tasks. Consider the rooms task shown in Figure 4.10(a). For each (slow

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 56

(a) (b)

Figure 4.7: In general, the agent received r = +10 reward for moving to the key
and r = +100 if it then moved to the car. On each time step, the agent had four
action choices A = {North, South, East, West}. Bumping to the wall produced a
reward of r = −2. There was no other reward or punishment from the environment
for exploring the space. (a) Key task: agent needs to reach to the location of key. (b)
Key-Car task: agent should first reach to the key and then to the car.

scale) time step, the meta-controller assigns a subgoal g ∈{doorways, key, car} to
the controller. The trained policy can be used to achieve each subgoal, in turn. (See
Figure 4.10 (b) to (f).) The controller is trained to solve the navigation task (in a
single room gridworld) for any given goal g. The intrinsic motivation makes solving
the rooms task easier since the agent can adapt the policy to the given goal g. It is
important to note that we made an assumption that an oracle in the meta-controller
provides the transformation from the state space to the input state for the network.
This assumption is discarded in later experiments in Section 4.9

4.7 Unsupervised Subgoal Discovery
The performance of the meta-controller/controller framework depends critically on
selecting good candidate subgoals for the meta-controller to consider.

What is a subgoal? In our framework, a subgoal is a state, or a set of related
states, that satisfies at least one of these conditions:

1. It is close (in terms of actions) to a rewarding state. For example, in the rooms
task in Figure 4.12(a), the key and lock are rewarding states.

2. It represents a set of states, at least some of which tend to be along a state
transition path to a rewarding state.

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 57

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Episodes ×10
4

0

5

10

M
ea
n
o
f
T
o
ta
l
S
co
re
s

Reaching to key hard task - test scores

key in random location

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Episodes ×10
4

0

10

20

30

40

50

60

70

80

90

100

S
u
cc
es
s
(%

)

Reaching to key hard task - success rate

key in random location

(a) (b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Episodes ×10
4

0

5

10

M
ea
n
o
f
T
o
ta
l
S
co
re
s

Reaching to key easy task - test scores

key in neighborhood of initial state

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Episodes ×10
4

0

10

20

30

40

50

60

70

80

90

100

S
u
cc
es
s
(%

)

Reaching to key easy task - success rate

key in neighborhood of initial state

(c) (d)

Figure 4.8: The test results for the task of moving to the key. Top: The key is located
in a random location. Bottom: The key is randomly located in the neighborhood of
the initial state. The total scores are the average of the total reward scores from all
possible initial states. The success rate is the percentage of the test episodes in which
the agent moves to the key.

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 58

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Episodes ×10
4

0

10

20

30

40

50

60

70

80

90

100

110

120

M
ea
n
o
f
T
o
ta
l
S
co
re
s

key-car hard task - test scores

key and car in random locations

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Episodes ×10
4

0

10

20

30

40

50

60

70

80

90

100

S
u
cc
es
s
(%

)

key-car hard task - success rate

key and car in random locations

(a) (b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Episodes ×10
4

0

10

20

30

40

50

60

70

80

90

100

110

120

M
ea
n
o
f
T
ot
al

S
co
re
s

key-car easy task - test scores

key=(0, 0) and car=(1, 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Episodes ×10
4

0

10

20

30

40

50

60

70

80

90

100

S
u
cc
es
s
(%

)

key-car easy task - success rate

key=(0,0) and car=(1,1)

(c) (d)

Figure 4.9: The test results for key-car task. Top: hard placement — the key and
the car are placed in random locations. Bottom: easy placement — the key is located
at (0,0) and the car is located at (1,1). The total scores are the average of the total
scores form all possible initial states. The success rate is the percentage of the test
episodes in which the agent successfully moves to the key and then to the car.

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 59

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Reusing the navigation skill to solve the rooms task. At each time
step, an oracle selected a subgoal for the agent (red locations). The agent with the
pretrained navigation skill successfully accomplishes all of the subgoals assigned by
the oracle. (a) The starting configuration. (b) Subgoal: doorway between room 1
and 2. (c) Subgoal: moving to the key. (d) Subgoal: doorway between room 2 and
3. (e) Subgoal: doorway between room 3 and 4. (f) Subgoal: moving to the car.

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 60

For example, in the rooms task, the red room, as illustrated in Figure 4.12 (a), should
be visited to move from the purple room to the blue room in order to pick up the
key. Thus any state in the red room is a reasonably good subgoal for an agent
currently in the purple room. Similarly, the states in the blue room are all reasonably
good subgoals for an agent currently in the red room. The doorways between rooms
can also be considered as good subgoals, since entering these states allows for the
transition to a set of states that may be closer to rewarding states.

Our strategy involves leveraging the set of recent transition experiences that must
be recorded for value function learning, regardless. Unsupervised learning methods
applied to sets of experiences can be used to identify sets of states that may be
good subgoal candidates. We focus specifically on two kinds of analysis that can be
performed on the set of transition experiences. We hypothesize that good subgoals
might be found by (1) attending to the states associated with anomalous transition
experiences and (2) clustering experiences based on a similarity measure and collecting
the set of associated states into a potential subgoal. Thus, our proposed method
merges anomaly (outlier) detection with the K-means clustering of experiences. The
unsupervised subgoal discovery method is summarized in Algorithm 10.

Algorithm 10 Unsupervised Subgoal Discovery Algorithm
for each e = (s, a, r, s′) stored in D do

if experience e is an outlier (anomaly) then
Store s′ to the subgoals set G
Remove e from D

end if
end for
Fit a K-means Clustering Algorithm on D using previous centroids as initial points
Store the updated centroids to the subgoals set G

4.7.1 Anomaly Detection
The anomaly (outlier) detection process identifies states associated with experiences
that differ significantly from the others. In the context of subgoal discovery, a relevant
anomalous experience would be one that includes a substantial positive reward in an
environment in which reward is sparse. We propose that the states associated with
these experiences make for good candidate subgoals. For example, in the rooms task,
transitions that arrive at the key or the lock are quite dissimilar to most transitions,
due to the large positive reward that is received at that point.

Since the goal of RL is maximizing accumulated (discounted) reward, these anoma-
lous experiences, involving large rewards, are ideal as subgoal candidates. (Experi-
ences involving large negative rewards are also anomalous, but make for poor subgoals.
As long as these sorts of anomalies do not greatly outnumber others, we expect that
the meta-controller can efficiently learn to avoid poor subgoal choices.) Large changes

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 61

in state features can also be marked as anomalous. In some computer games, like
Montezuma’s Revenge, each screen represents a room, and the screen changes quickly
when the agent moves from one room to another. This produces a large distance
between two consecutive states. Such a transition can be recognized simply by the
large instantaneous change in state features, marking the associated states as rea-
sonable candidate subgoals. There is a large literature on anomaly detection (Hodge
and Austin, 2004), in general, offering methods for applying this insight. Heuristic
meta-parameter thresholds can be used to identify dissimilarities that warrant spe-
cial attention, or unsupervised machine learning methods can be used to model the
joint probability distribution of state variables, with low probability states seen as
anomalous.

4.7.2 K-Means Clustering
The idea behind using a clustering algorithm is “spatial” state space abstraction and
dimensionality reduction with regard to the internal representations of states. If a
collection of transition experiences are very similar to each other, this might suggest
that the associated states are all roughly equally good as subgoals. Thus, rather
than considering all of those states, the learning process might be made faster by
considering a representative state (or smaller set of states), such as the centroid of a
cluster, as a subgoal. Furthermore, using a simple clustering technique like K-means
clustering to find a small number of centroids in the space of experiences is likely
to produce centroid subgoals that are dissimilar from each other. Since rewards are
sparse, this dissimilarity will be dominated by state features. For example, in the
rooms task, the centroids of K-means clusters, with K = 4, lie close to the geometric
centers of the rooms, with the states within each room coming to belong to the cor-
responding subgoal’s cluster. In this way, the clustering of transition experiences can
approximately produce a coarser representation of state space, in this case replacing
the fine grained “grid square location” with the coarser “room location”.

4.7.3 Mathematical Interpretation
The value of a state, Vπ(s), is defined as the expected future rewards, following a
policy π

Vπ(s) , E
[T∑
t=0

γtrt|s, π
]
, (4.9)

where T is a termination time, and γ < 1. In the model-free HRL framework, Vπ(s)
can be approximated by a sequence of values of the meta-controller’s value function
for one subgoal after another

V (s) ≈ Q(s, g1) + γT1Q(g1, g2) + γT1+T2Q(g2, g3) + . . . (4.10)

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 62

where Ti ≤ T is effective number of controller steps to accomplish subgoal gi (note
that T = T1 + T2 + . . .). We assume that the controller has learned a good policy
through the process of intrinsic motivation learning. Since the rewards are sparse, the
value of any state close to an anomalous subgoal is roughly equal to the immediate
reward r (since the future rewards vanish for a small discount factor γ). The K-means
clustering algorithm partitions the state space into K regions. The value of states
in a cluster close to an anomalous subgoal g is approximately γT1r, since it takes T1
steps from states in this region to arrive the rewarding state, and obtain the reward
r. The clustering algorithm takes into consideration the distance between experiences
that do not contain anomalous ones. Therefore, the states in a cluster have similar
values, because, for each state in a cluster, it takes approximately the same number
of steps to reach a rewarding state (an anomalous subgoal).

4.8 A Unified Model-Free HRL Framework
In this section, we introduce a unified method for model-free HRL, so that all three
HRL subproblems can be solved jointly. Our intuition, shared with other researchers,
is that hierarchies of abstraction will be critical for successfully solving problems
with sparse delayed feedback. To be successful, the agent should represent knowledge
at multiple levels of spatial and temporal abstraction. Appropriate abstraction can
be had by identifying a relatively small set of states that are likely to be useful as
subgoals and jointly learning the corresponding skills of achieving these subgoals,
using intrinsic motivation.

Inspired by Kulkarni et al. (2016), we start by using two levels of hierarchy (Figure
4.11). The more abstract level of this hierarchy is managed by a meta-controller
which guides the action selection processes of the lower level controller. Separate
value functions are learned for the meta-controller and the controller as shown in
Figure 4.11(b).

The conceptual components of HRL — temporal abstraction, intrinsic motiva-
tion, and unsupervised subgoal discovery — can be unified into a single model-free
HRL framework. The major components of this framework, and the information flow
between these components, are schematically displayed in Figure 4.11 (a). At time
t, the meta-controller observes the state, s = st, from the environment and chooses a
subgoal, g = gt, either from the discovered subgoals or from a random set of states (to
promote exploration). The controller receives an input tuple, (s, g), and is expected
to learn to implement a subpolicy, π(a|s, g), that solves the subtask of reaching from
s to g. The controller selects an action, a, based on its policy, in our case directly
derived from its value function, q(s, g, a;w). After one step, the environment updates
the state to s′ and sends a reward r. The agent’s experience (s, a, s′, r) is stored in
the experience memory, D. The intrinsic transition experience (s, g, a, r̃, s′) is stored
in the controller’s experience memory, D1. If the internal critic detects that the re-
sulting state, s′, is the current goal, g, the experience (st, g, G, st′) is stored in the
meta-controller experience memory, D2, where st is the state that prompted the se-

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 63

(a) (b)

Figure 4.11: (a) The information flow in the unified Model-Free Hierarchical
Reinforcement Learning Framework. (b) Temporal abstraction in the meta-
controller/controller framework.

lection of the current subgoal, and st′ = st+T is the state when the meta-controller
assigns the next subgoal, g′ = gt′ . The experience memory sets are typically used to
train the value function approximators for the meta-controller and the controller by
sampling a random minibatch of recent experiences. The unsupervised subgoal dis-
covery mechanism exploits the underlying structure in the experience memoryD using
unsupervised anomaly detection and K-means clustering. A detailed description of
the unified representation learning in our model-free HRL framework is outlined in
Algorithm 11.

4.9 Experiments on Unified HRL Framework
We conducted simulation experiments in order to investigate the ability of our unsu-
pervised subgoal discovery method to discover useful subgoals, as well as the efficiency
of our unified model-free hierarchical reinforcement learning framework. The simu-
lations were conducted in two environments with sparse delayed feedback: a variant
of the rooms task, shown in Figure 4.12(a), and the “Montezuma’s Revenge” game,
shown in Figure 4.17(a).

All code was implemented in the Python using Pytorch, NumPy, Opencv, and
SciPy libraries and is available at https://github.com/root-master/unified-hrl.

4.9.1 4-Room Task with Key and Lock
Consider the task of navigation in the 4-room environment with a key and a lock, as
shown in Figure 4.12(a). This is the same task that was explored in earlier parts of
this chapter. While this task was inspired by the rooms environment introduced by
Sutton, et al. (1999), it is much more complex. As before, the agent not only needs

https://github.com/root-master/unified-hrl

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 64

Algorithm 11 Unified Model-Free HRL Algorithm
Pretrain controller using Algorithm 8 on a set of random subgoals G ′
Initialize experience memories D, D1 and D2
Walk controller for M ′ episodes on random subgoals G ′, and store (s, a, s′, r) to D
Run Unsupervised Subgoal Discovery on D to initialize G
for episode = 1, . . . ,M do

Initialize state s0 ∈ S, s← s0
G← 0
g ←EPSILON-GREEDY(Q(s,G;W), ε2)
repeat for each step t = 1, . . . , T

compute q(s, g, a;w)
a←EPSILON-GREEDY(q(s, g,A;w), ε1)
Take action a, observe s′ and external reward r
Compute intrinsic reward r̃ from internal critic
Store controller’s intrinsic experience, (s, g, a, r̃, s′) to D1
Store agent’s transition experience, (s, a, r, s′) to D
Sample J1 ⊂ D1 and compute ∇L
Update controller’s parameters, w ← w − α1∇L
Sample J2 ⊂ D2 and compute ∇L
Update meta-controller’s parameters, W ←W − α2∇L
s← s′, G← G+ r
Decay exploration rate of controller ε1
if experience e is an outlier (anomaly) then

Store s′ to the subgoals set G
Remove e from D

end if
until s is terminal or subgoal g is attained
Decay exploration rate of meta-controller ε2
Store meta-controller’s experience, (s0, g, G, s

′) to D2
Fit a K-means clustering on D every N step to update centroids of G

end for

to learn how to navigate form any arbitrary state to any other state, but it also needs
to visit some states in a specific temporal order. At the beginning of each episode,
the agent is initialized in an arbitrary location in an arbitrary room. The agent has
four possible move actions, A = {North, South, East,West}, on each time step. The
agent receives r = +10 reward for reaching the key and r = +40 if it moves to the lock
while carrying the key (i.e., any time after visiting the key location during the same
episode). Bumping into a wall boundary is punished with a reward of r = −2. There
is no reward for just exploring the space. Learning in this environment with sparse
delayed feedback is challenging for a reinforcement learning agent. To successfully
solve the task, the agent should represent knowledge at multiple levels of spatial
and temporal abstractions. The agent should also learn to explore the environment

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 65

efficiently.
We first examined the unsupervised subgoal discovery algorithm over the course

of a random walk. The agent was allowed to explore the 4-room environment for 100
episodes. Each episode ended either when the task was completed or after reaching
a maximum time step limit of 200. The agent’s experiences, e = (s, a, r, s′), were
collected in an experience memory, D. The stream of external rewards for each tran-
sition was used to detect anomalous subgoals (Figure 4.13(a)). We applied a heuristic
anomaly detection method for the streaming rewards that was able to differentiate
between the rare large positive rewards and the regular small ones. These peaks,
as shown in Figure 4.13(a), corresponded to the experiences in which the key was
reached (r = +10) or the experience of reaching the lock after obtaining the key.

We also applied a K-means clustering algorithm to the experience memory. (See
Algorithm 11.) The centroids of the K-means clusters (with K = 4) are plotted in
Figure 4.12(b). The clusters, along with the anomalous states, were collected into
the set of subgoals. By choosing K = 4 for the number of clusters (or centroids), the
discovered centroids roughly correspond to the centers of the rooms, and the clusters
correspond to the rooms. But, the choice of K = 4 comes from our knowledge of the
spatial structure of this environment. Here, we show that other choices for K lead to
different, but still useful, clusterings of the state space. Indeed, all we expect from
the clustering algorithm in unsupervised subgoal discovery is to divide the state space
into clusters of states with roughly similar values, and the choice of K is not crucial.
Also, any good spatial clustering method would work equally well. For example, with
the number of clusters, K = 6, we saw a clustering in which, two of the four rooms
were divided into two clusters (see Figure 4.12(c)). We repeated this experiment for
K = 8, where we saw equally useful clusters, with two room containing two cluster
centroids, one room containing three clusters, and one room only with one cluster (see
Figure 4.12(d)). The K-means algorithm in our unsupervised subgoal discovery can
be incremental, using the previous centroids as initial points for the next iteration.
Therefore, the configuration of clusters were different over training, but the results of
clustering were useful regardless.

In summary, our unified model-free HRL framework (Algorithm 11) does not rely
on a particular choice of K. To prove this claim, we trained the agent in the unified
model-free HRL framework for different numbers of clusters, K = 4, K = 6, and
K = 8.

In these simulations, learning occurred in one unified phase consisting of 100,000
episodes. The meta-controller and the controller, and unsupervised subgoal discovery,
were trained all together. (See Algorithm 11.) Value function approximators were
implemented as multi-layer artificial neural networks as shown in Figure 4.14. The
controller network, q(s, g, a;w), took the state, s, and the goal, g, as inputs. States
were presented to the network as Cartesian coordinates, with separate pools of inputs
for each of the two dimensions. The subgoal was initially chosen randomly from
the set of discovered subgoals, resulting from unsupervised subgoal discovery during
early random walks of the agent. The meta-controller value function receives a one-

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 66

(a) (b)

(c) (d)

Figure 4.12: (a) The 4-room task with a key and a lock. (b) The results of the
unsupervised subgoal discovery algorithm with anomalies marked with black Xs and
centroids with colored ones. The number of clusters in K-means algorithm was set
to K = 4. (c) The result of the unsupervised subgoal discovery for K = 6. (d) The
results of the unsupervised subgoal discovery for K = 8.

hot encoding of the current state, computed by converting the current state to the
index of the corresponding subgoal. The meta-controller outputs a one-hot encoding
of the best subgoal. The controller receives a Gaussian-blurred representation of
current state variables (Cartesian coordinates) gated by the current subgoal, and it

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 67

0 20000 40000 60000 80000 100000

Training Episodes

20

30

40

50

60

70

80

90

100

S
u

cc
es

s
in

R
ea

ch
in

g
S

u
b

go
al

s
%

K = 4

K = 6

K = 8

(a) (b)

0 20000 40000 60000 80000 100000

Training Episodes

−10

0

10

20

30

40

50

E
p

is
od

e
R

et
u

rn

Unified Model-Free HRL Method, K = 4

Unified Model-Free HRL Method, K = 6

Unified Model-Free HRL Method, K = 8

Regular RL

0 20000 40000 60000 80000 100000

Training Episodes

0

20

40

60

80

100

S
u

cc
es

s
in

S
ol

vi
n

g
T

as
k%

Unified Model-Free HRL Method, K = 4

Unified Model-Free HRL Method, K = 6

Unified Model-Free HRL Method, K = 8

Regular RL

(c) (d)

Figure 4.13: (a) Reward over an episode, with anomalous points corresponding to the
key (r = +10) and the lock (r = +40). (b) The average success of the controller in
reaching subgoals over 200 consecutive episodes. (c) The average episode return. (d)
The average success rate for solving the 4-room task.

produces a sparse conjunctive encoding over hidden units using a k-Winners-Take-All
mechanism, akin to lateral inhibition in cortex (Rafati and Noelle, 2015; O’Reilly and
Munakata, 2001). This is then mapped onto the controller value function output for
each possible action. Most previously published subgoal discovery methods focus on
finding the doorways (funnel type subgoals) (Goel and Huber, 2003; Simsek et al.,
2005). With K = 4, the doorways can be discovered as boundaries between adjacent
clusters. Note that our method is not strongly task dependent, so the choice of K
is not crucial to the learning of meaningful representations. The results of clustering
for different values of K are shown in Figure 4.12 (b-d).

When a centroid was selected as a subgoal, if the agent entered any state in
the corresponding cluster, the subgoal was considered attained. Thus, the controller

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 68

Figure 4.14: Integrated meta-controller and controller network architecture.

essentially learned how to navigate from any location to any state cluster and also
to any of the anomalous subgoals (key and door). The learning rate was α = 0.001,
the discount factor was γ = 0.99, and the exploration rate was set to ε1 = ε2 = 0.2.
The average success rate of the controller in achieving subgoals is shown in Figure
4.13(b).

The average return, over 200 consecutive episodes, is shown in Figure 4.13(c).
The agent very quickly converged on the optimal policies and collected the maximum
reward (+50). The high exploration rate of 0.2 caused high stochasticity, but the
meta-controller and controller could robustly solve the task on more than 90% of the
episodes very early in training. After about 40,000 episodes, the success rate was
100%, as shown in Figure 4.13(d). There was no significant difference in the results
of learning for different choices of the number of clusters, K.

We compared the learning efficiency of our unified HRL method with the perfor-
mance resulting from training a value approximation network with a regular, non-
hierarchical, RL algorithm, TD SARSA (Sutton and Barto, 2017). The function
approximator that we used for Q(s, a;w) matched that of the controller, equating
for computational resources, and we used the same values for the training hyper-
parameters. The regular RL agent could only reach the key before becoming stuck
in that region, due to the high local reward. Despite the very high exploration rate
used, the regular RL agent was not motivated to explore the rest of the state space
to reach the lock and solve the task. Results are shown in Figure 4.13(c) and (d) (red

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 69

lines).
In our unified model-free HRL, the intrinsic motivation learning provides an effi-

cient exploration policy for successful subgoal discovery using the unsupervised sub-
goal discovery algorithm. We examined the role of intrinsic motivation learning in
an efficient exploration of the state space by computing the rate of coverage, i.e. the
number of visited states divided by the size of the state space, calculated during
training. The results for the rate of coverage, using different methods, are shown in
Figure 4.15. A random walk of the agent could only cover 30% of the states (grid
square) after 1,000 episodes, with each episode consisting of 32 steps. When the agent
was trained by a regular Q-learning method, it could only learn a sub-optimal policy
and reach the key, but it didn’t have a motivation to explore the other regions of the
state space and find the other rewarding states, i.e. the lock. The rate of coverage
using the regular RL method was 40% after 1,000 episodes of training. Intrinsic mo-
tivation learning, coupled with the unsupervised subgoal discovery algorithm and a
random meta-controller, visited 67% of the states after 1,000 episodes. Our unified
model-free HRL method, in which the intrinsic motivation learning was integrated
with the unsupervised subgoal discovery and meta-controller learning, could success-
fully cover 100% of the state space and discover all the useful subgoals in less than
1,000 episodes. This led to successfully solving the task (see Figure 4.13(d)).

0 200 400 600 800 1000

Training Episodes

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

te
S

p
ac

e
C

ov
er

ag
e

R
at

e

Intrinsic Motivation within Unified HRL

Intrinsic Motivation with Random Subgoals Selection

Regular RL

Random Walk

Figure 4.15: The rate of coverage in the rooms task. Plotted is the number of visited
states as a fraction of the total size of the state space.

It is worth noting that this task involves a partially observable Markov decision
process (POMDP), because information about whether or not the agent has the key
is not visible in the state. This hidden state information poses a serious problem
for standard RL algorithms, but our HRL agent was able to overcome this obstacle.

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 70

Through meta-controller learning, the hidden information became implicit in the
selected subgoal, with the meta-controller changing the current subgoal once the key
is obtained. In this way, our HRL framework is able to succeed in task environments
that are effectively outside of the scope of standard RL approaches.

4.9.2 Montezuma’s Revenge
We applied our HRL approach to the first room of the game Montezuma’s Revenge.
(See Figure 4.17(a).) The game is well-known as a challenge for RL agents because
it requires solving many subtasks while avoiding traps. Having only sparse delayed
reward feedback to drive learning makes this RL problem extremely difficult. The
agent should learn to navigate the man in red to the key by: (1) climbing the middle
ladder (2) climbing the bottom right ladder (3) climbing the bottom left ladder (4)
moving to the key. After picking up the key (r = +100), the agent should return back,
reversing the previous action sequence, and attempt to reach the door (r = +300)
and exit the room. The moving skull at the bottom of the screen, which ends an
episode upon contact, makes obtaining the key extremely difficult. The episode also
ends unsuccessfully if the man falls off of a platform.

DeepMind’s Deep Q-Learning (DQN) algorithm (Mnih et al., 2015), which sur-
passed human performance on many ATARI 2600 games, failed to learn this game
since the agent did not reach any rewarding state during exploration.

In this problem, the agent requires the skills arising from intrinsic motivation
learning in order to explore the environment in a more efficient way (Kulkarni et al.,
2016). Our HRL approach supports the learning of such skills. The meta-controller
and the controller were trained in two phases.

In Phase I (pretraining), the controller was trained to move the man from any
location in the given frame, s, to any other location specified in a subgoal frame, g.
Unsupervised object detection using computer vision algorithms can be challenging
(Kulkarni et al., 2016; Fragkiadaki et al., 2015). We made the simplifying assumption
that, in many games, edges were suggestive of objects, and the locations of objects
made for good initial subgoals. An initial set of “interesting” subgoal locations were
identified using a custom edge detection algorithm, avoiding empty regions as sub-
goals. We used the Canny edge detection algorithm on one image of the game, and
chose 20 random locations, as initial subgoals, from the identified edges (see Figure
4.17(b)). These locations were used in Phase I of training to train the controller
through intrinsic motivation, using Algorithm 8. Note that edge detection was only
performed to identify Phase I subgoals. Specifically, it was not used to change or
augment the state representation in any way.

We used a variant of the DQN deep Convolutional Neural Network (CNN) archi-
tecture for approximation of the controller’s value function, q(s, g, a;w) (see Figure
4.16 (a)). The input to the controller network consisted of four consecutive frames of
size 84×84, encoding the state, s, and an additional frame binary mask encoding the
subgoal, g. The concatenated state and subgoal frames were passed to the network,

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 71

and the controller then selected one of 18 different joystick actions based on a policy
derived from q(s, g, a;w).

(a) (b)

Figure 4.16: (a) The CNN architecture for the controller’s value function. (b) The
CNN architecture for the meta-controller’s value function.

During intrinsic motivation learning, the recent experiences were saved in an ex-
perience memory, D, with a size of 106. In order to support comparison to previously
published results, we used the same learning parameters as DeepMind’s DQN (Mnih
et al., 2015). Specifically, the learning rate, α, was set to to be 0.00025, with a dis-
count rate of γ = 0.99. During Phase I learning, we trained the network for a total of
2.5 × 106 time steps. The exploration probability parameter, ε1, decreased from 1.0
to 0.1 in the first million steps and remained fixed after that.

After every 100, 000 time steps, we applied our unsupervised subgoal discovery
method to the contents of the experience memory in order to find new subgoals, both
anomalies and centroids, using K-means clustering with K = 10. As shown in Fig-
ure 4.17(c), the unsupervised learning algorithm managed to discover the location of
the key and the doors in this way. It also identified useful objects such as ladders,
platforms, and the rope. These subgoals were used to train the meta-controller and
controller. The intrinsic motivation learning process played a major role in the suc-
cessful subgoal discovery of subgoals, producing a policy that encouraged an efficient
exploration of the state space. A random walk of the agent could only discover a
small subset of the subgoals, e.g., two ladders and the rope (see Figure 4.17 (d)).
But, the unsupervised subgoal discovery method used during the intrinsic motivation
learning process could discover all of the useful subgoals (see Figure 4.17(c)).

In Phase II, we trained the meta-controller, the controller, and unsupervised sub-
goal discovery jointly together using Algorithm 11. We reset the exploration rates, ε1,

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 72

(a) (b) (c) (d)

0 500000 1000000 1500000 2000000 2500000

Training steps

0

20

40

60

80

100

S
u

cc
es

s
in

re
ac

h
in

g
su

b
go

al
s

%

Unified Model-Free HRL Method

DeepMind DQN Algorithm (Mnih et. al., 2015)

0 500000 1000000 1500000 2000000 2500000

Training steps

0

50

100

150

200

250

300

350

400

A
ve

ra
ge

re
tu

rn
ov

er
10

00
ep

is
d

es

Unified Model-Free HRL Method

DeepMind DQN Algorithm (Mnih et. al., 2015)

(e) (f)

Figure 4.17: (a) The first screen of the Montezuma’s Revenge game. (b) The results of
the Canny edge detection algorithm on a single image of the game. (c) The results of
the unsupervised subgoal discovery algorithm during the intrinsic motivation learning
of the controller in the first room of the Montezuma’s Revenge game. Blue circles
are the anomalous subgoals and the red ones are the centroids of clusters. (d) The
results of the unsupervised subgoal discovery for a random walk. (e) The success of
the controller in reaching subgoals. (f) The average game score.

and ε2 to 1. The exploration probability parameters decreased from 1.0 to 0.1 in the
first million steps and remained fixed after that. We ran the unsupervised subgoal
discovery method every 100, 000 time steps to update the centroids of the clusters.
We used an architecture based on the DQN CNN (Mnih et al., 2015), as shown in
Figure 4.16(b), for the meta-controller’s value function, Q(s, g;W). All the reward-
ing (anomalous) subgoals were discovered in Phase I. We used the non-overlapping
discovered subgoals, which resulted in a set of 11 subgoals, G. At the beginning of
each episode, the meta-controller assigned a subgoal, g ∈ G, based on an epsilon-
greedy policy derived from Q(s, g;W). The controller then attempted to reach these
subgoals. The controller’s experience memory, D1, had a size of 106, and the size of
the meta-controller’s experience memory, D2, was 5× 104.

The cumulative rewards for the game episodes are shown in Figure 4.17(e). After

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 73

about 1.8 million time steps, the controller managed to reach the key subgoal more
frequently. The average success of intrinsic motivation learning over 100, 000 con-
secutive episodes is depicted in Figure 4.17(f). After about 2 million learning steps,
the meta-controller regularly chose the proper subgoals for collecting the maximum
reward (+400).

4.10 Neural Correlates of Model-Free HRL
This work has been inspired, in part, by theories of reinforcement learning in the
brain. These theories often involve interactions between the striatum and neocortex.
The temporal difference learning algorithm, which is a model-free RL, account for
the role of the midbrain dopaminergic system (Schultz et al., 1993). The actor-critic
architectures for RL have drawn connections within the basal ganglia and cerebral
cortex. The RL-based accounts have also addressed the learning processes for motor
control, working memory, and habitual and goal-directed behaviors.

There is some evidence that temporal abstraction in HRL might map onto regions
within the dorsolateral and orbital prefrontal cortex (PFC) (Botvinick et al., 2009),
allowing the PFC to provide hierarchical representations to the basal ganglia.

More recent discoveries reveal a potential role for medial temporal lobe structures,
including the hippocampus, in planning and spatial navigation (Botvinick and Wein-
stein, 2014), utilizing a hierarchical representation of space (Chalmers et al., 2016).
There are evidences that hippocampus serve in model-based and model-free HRL
with both flexibility and computational efficiency (Chalmers et al., 2016). Perhaps,
the most salient aspects of the hippocampus is the existence of place cells. (Strange
et al., 2014), which activate in particular regions of an environment. Place cells in
the dorsal hippocampus represent small regions while those in the ventral hippocam-
pus represent larger regions (Chalmers et al., 2016). The fact that the hippocampus
learns representations at multiple scales of abstraction supports the idea that the
hippocampus might be a major component of the subgoal discovery mechanism in
the brain. For navigation in the 4-room task, we see that the clustering algorithm
divides the state space into a few big regions (ventral hippocampus), and the anomaly
detection algorithm detects much smaller rewarding regions (dorsal hippocampus).

There are also studies of interactions between the hippocampus and the PFC
that are directly related to our unsupervised subgoal discovery method. Preston and
Eichenbaum (2013) illustrated how novel memories (like anomalous subgoals) could
be reinforced into permanent storage. Additionally, their studies suggest how PFC
may be important for finding new meaningful representations from memory replay of
experiences. This phenomena is similar to our clustering of experience memory.

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 74

4.11 Future Work

4.11.1 Learning Representations in Model-based HRL
As mentioned in Chapter 2, the difference between model-based RL, and model-
free RL lies fundamentally in the type of information the agent stores in memory
(Botvinick and Weinstein, 2014). In model-free RL, the agent stores a representation
of the value function, which is an estimate of the cumulative future rewards the agent
expects, when beginning in a particular state with a particular action. Updates to
the representations of the value function are driven by the temporal difference error,
which is a reward prediction error generated based on the agent’s experience during
direct interaction with the environment.

On the other hand, model-based RL, does not store a value function. Instead,
the agent maintains an internal model of the environment, including a model of the
reward function and a model of the state transition probabilities. The state transition
model, p̂(s′|s, a), predicts a distribution over next states as an outcome of a particular
action in a particular state. The reward model, r̂(s, a), represents an estimate of the
immediate reward associated with individual states or actions. An RL agent equipped
with these two knowledge structures can use planning to predict the outcome of future
actions, before direct interaction with the environment. After executing a particular
plan, the error of the agent’s internal models can be used to update the models from
the experience with the environment.

Although learning models of the environment adds to the computational com-
plexity of representation learning, it is important to note that model learning is kind
of a supervised learning (which is more straightforward than RL, and learning the
value function). Also, the parameters of the function approximator used to model
the environment can be shared with the value function. Hence these parameters can
be learned simultaneously with the value function, or they can be transfered in order
to increase the efficiency of computations, and enable scaling of the representation
learning process to more complex tasks.

The model-free and model-based frameworks can be extended to HRL methods.
In model-free HRL, as we discussed in this chapter, the agent should learn represen-
tations of the value function by integrating temporal abstraction, intrinsic motivation
learning, and subgoal discovery. The model-free HRL agent maintains two (or more)
value functions, one for the top-level learner (meta-controller), and one for the low-
level learner (controller). Also, we need a subgoal discovery mechanism in order to
discover useful subgoals and find the underlying structure of the state space.

In Model-Based HRL (MBHRL) the agent can use planning as part of the learning
process. The agent can additionally learn a model that incorporates a prediction of
the subgoals’ distribution. While learning these models increases the computational
complexity of the model-based approach, an agent equipped with a subgoal prediction
mechanism might learn faster. The ability to plan hierarchically might have a positive
impact on planning performance, as well as the learning of useful representations.

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 75

Learning representations in the model-based Hierarchical Reinforcement Learn-
ing framework is an interesting and open problem for a future work. Knowledge
extracted from model-free HRL might be used to guide the learning of representa-
tions in model-based HRL. The collaboration of model-free HRL (direct learning)
and model-based HRL (planning) is also another interesting open problem. Efficient
exploration is essential for model-based RL for learning the models. We showed that
intrinsic motivation learning helps with an efficient exploration in the environment
with sparse delayed feedback, such as Montezuma’s Revenge. We hypothesize that a
behavior policy derived from intrinsic motivation learning might help with an efficient
exploration in the model-based HRL framework, as well. As future work, we will con-
sider integrating model-free HRL and model-based HRL in order to solve tasks that
are too complex for a model-free RL approach alone or a model-based RL approach
alone.

4.11.2 Solving Montezuma’s Revenge
We hypothesize that integrating our model-free method with a model-based approach
can help solve complex games, such as Montezuma’s Revenge and Star Craft II.

Here we present an idea to solve the entire game of Montezuma’s Revenge in the
unified HRL framework. The game has nine different levels, each consisting of 100
screens, organized as a pyramid with a base of 19 screens wide and with 10 screens
height (for more details visit https://symlink.dk/nostalgia/c64/montezuma/). In
order to solve the game, the agent should maintain a map of the game as part of the
model of the environment. In particular, the agent should know which room it is in
and recognize previously visited rooms. It should also recognize when it has entered
a new room as it explores the environment. It is to be noted that this map is a small
graph representing the rooms’ connectivity and the subgoals, and the map does not
necessarily need a huge memory. The transitioning from one screen to another screen
can be recognized by computing the distance between two consecutive states, s s′, i.e.
‖s−s′‖. When transitioning to the new screen, this distance will be large introducing
an anomaly, which our unsupervised subgoal discovery process is able to discover. In
some of the screens (rooms), there are rewarding objects, such as keys, doors, swords,
etc. The unsupervised subgoal discovery method in concert with intrinsic motivation
learning can be used to discover these rewarding objects. The agent can memorize
rewarding transitions, in order to construct a model of subgoal discovery to predict
the location of rewarding objects in new screens. Then the state transition model
can be used to plan a path towards reaching these subgoals. The direct interaction
with the environment (experience) can be used to reduce the prediction errors of the
models. The agent can save pairs of (room,object) as the subgoals set.

The agent might learn this task with three levels of temporal abstraction. The
top meta-controller receives the current screen, and chooses to stay in the room or go
to other screen, and the bottom meta-controller can choose the best subgoal in that
screen to pursue. Note that these two-level meta-controller can be combined, and

https://symlink.dk/nostalgia/c64/montezuma/

Chapter 4. Learning Representations in Model-Free Hierarchical Reinforcement Learning 76

share parameters. The controller, then receives the room, and the subgoal location,
and navigates the man to the subgoal using the skills learned in intrinsic motivation
learning phase.

This game has been recently solved fully by Ecoffet et al. (2019). Their algorithm
is called Go-Explore, and it is summarized in these steps: “(1) remember previously
visited states, (2) first return to a promising state (without exploration), then explore
from it, and (3) solve simulated environments through any available means (includ-
ing by introducing determinism), and then robustify via imitation learning” (Ecoffet
et al., 2019). Explore-Go, however, does not succeed in solving the game without
extensive knowledge of the domain, and it requires massive memories.

The step (2) of Go-Explore method is very similar to the anomalous subgoal
discovery of our unsupervised subgoal discovery method. We hypothesize that model-
based HRL in concert with model-free HRL can solve this task without the need to
memorize the visited states (step (1)), the imitation learning (step (3)), and the
domain knowledge.

4.12 Conclusions
We have proposed and demonstrated a novel model-free HRL method for subgoal
discovery using unsupervised learning over a small memory of the most recent ex-
periences (trajectories) of the agent. When combined with an intrinsic motivation
learning mechanism, this method learns subgoals and skills together, based on expe-
riences in the environment. Thus, we offer an HRL approach that does not require a
model of the environment, making it suitable for larger-scale applications.

Our results show that the intrinsic motivation learning produces a good policy to
explore the state space efficiently, which leads to successful subgoal discovery. Our
unsupervised subgoal discovery mechanism is able to find the structure of the state
space, and learns the spatial hierarchies, and the meta-controller learns the temporal
hierarchies to choose subgoals in the correct order.

We hypothesize that the hippocampus, in concert with the prefrontal cortex, is
playing a major role in the subgoal discovery process by replaying the memory of
experiences, in order to find meaningful low dimensional representation of the state.

Chapter 5

Trust-Region Methods for
Empirical Risk Minimization

Abstract
Deep learning algorithms often require solving a highly nonlinear and nonconvex
unconstrained optimization problem. Generally, methods for solving the optimization
problems in machine learning, and in deep learning specifically, are restricted to the
class of first-order algorithms, like stochastic gradient descent (SGD).

The major drawback of the SGD methods is that they have the undesirable effect
of not escaping saddle-points. Furthermore, these methods require exhaustive trial-
and-error to fine-tune many learning parameters. Using the second-order curvature
information to find the search direction can help with more robust convergence for
the nonconvex optimization problem. However, computing the Hessian matrix for
large-scale problems is not computationally practical.

Alternatively, quasi-Newton methods construct an approximation of the Hessian
matrix to build a quadratic model of the objective function. Quasi-Newton meth-
ods, require only first-order gradient information, like SGD, but they can result
in superlinear convergence, which makes them attractive alternatives. The limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) approach is one of the most
popular quasi-Newton methods that constructs positive-definite Hessian approxima-
tions. Since the true Hessian matrix is not necessarily positive definite, an extra
initialization condition is required when constructing the L-BFGS matrices to avoid
false negative curvature information.

In this chapter, we first propose efficient optimization methods based on L-BFGS
quasi-Newton methods using line search and trust-region strategies. Our method
bridges the disparity between first order methods and second order methods by using
gradient information to calculate low-rank updates to Hessian approximations. We
provide empirical results on the classification task of the MNIST dataset and show
robust convergence with preferred generalization characteristics.

Secondly, we propose various choices for initialization methods of the L-BFGS ma-

77

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 78

trices within a trust-region framework. We provide empirical results on the classifica-
tion task of the MNIST digits dataset to compare the performance of the trust-region
algorithm with different L-BFGS initialization methods.

5.1 Introduction
Deep learning is becoming the leading technique for solving large-scale machine learn-
ing problems, including image classification, natural language processing, and large-
scale regression tasks (Goodfellow et al., 2016). Deep learning algorithms attempt
to train a function approximation (model), usually a convolutional neural network
(CNN), over a large dataset. In most of deep learning algorithms, solving an uncon-
strained optimization of a highly nonlinear and nonconvex objective function of the
form

min
w∈Rn

L(w) , 1
N

N∑
i=1

`i(w) (5.1)

is required (Hastie et al., 2009), where w ∈ Rn is the vector of trainable parameters of
the CNN model, N is the size of dataset, and `i(w) is the error of the current model’s
prediction for the ith observation of the training dataset.

5.1.1 Existing Methods
Finding an efficient optimization algorithm for the large-scale, nonconvex problem
(5.1) has attracted many researchers (Goodfellow et al., 2016). There are various
algorithms proposed in the machine learning and optimization literatures to solve
(5.1). Among those, one can name first-order methods such as stochastic gradient
descent (SGD) methods (Robbins and Monro, 1951; Bottou, 2010; Duchi et al., 2011;
Recht et al., 2011), the quasi-Newton methods (Adhikari et al., 2017; Le et al., 2011a;
Erway et al., 2018; Xu et al., 2017), and also Hessian-free methods (Martens, 2010;
Martens and Sutskever, 2011, 2012; Bollapragada et al., 2016).

Since, in large-scale machine learning problems usually N and n are very large
numbers, the computation of the true gradient ∇L(w) is expensive and the compu-
tation of the true Hessian ∇2L(w) is not practical. Hence, most of the optimization
algorithms in the machine learning and deep learning literatures are restricted to vari-
ants of first-order gradient descent methods, such as SGD methods. SGD methods
use a small random sample of data (S) to compute an approximate of the gradient of
the objective function, ∇L(S)(w) ≈ ∇L(w). At each iteration of the learning update,
the parameters are updated as wk+1 ← wk − ηk∇L(Sk)(wk), where ηk is referred to as
the learning rate.

The computational cost-per-iteration of SGD algorithms is small, making them
the most widely used optimization method for the vast majority of deep learning
applications. However, these methods require fine-tuning of many hyperparameters,

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 79

including the learning rates. The learning rate is usually chosen to be very small;
therefore, the SGD algorithms require revisiting many epochs of data during the
learning process. Indeed, it is unlikely that the SGD methods perform successfully
in the first attempt at a problem, though there is recent work that addresses tuning
hyperparameters automatically (see e.g., (Zeiler, 2012; Kingma and Ba, 2014)).

Another major drawback of SGD methods is that they struggle with saddle-points
that occur in most nonconvex optimization problems. These saddle-points have an
undesirable effect on the model’s generalization ability. On the other hand, using the
second-order curvature information, can help produce more robust convergence. The
Newton’s method, a second-order method, uses the Hessian, ∇2L(w), and the gradi-
ent to find the search direction, pk = −∇2L(wk)−1∇L(wk) and then use line-search
strategy to find the step length along the search direction. The main bottleneck in
second-order methods is the serious computational challenges involved in the compu-
tation of the Hessian, ∇2L(w), for large-scale problems, in which it is not practical
because n is large. The quasi-Newton methods and Hessian-free methods both use
approaches to approximate the Hessian matrix without computing and storing the
true Hessian matrix, ∇2L(w). Hessian-free methods attempt to find an approximate
Newton direction by solving ∇2L(wk)pk = −∇L(wk) without forming the Hessian,
using conjugate-gradient methods (Martens, 2010; Martens and Sutskever, 2011, 2012;
Bollapragada et al., 2016).

Quasi-Newton methods form an alternative class of first-order methods for solving
the large-scale nonconvex optimization problem in deep learning. These methods, as
in SGD, require only computing the first-order gradient of the objective function. By
measuring and storing the difference between consecutive gradients, quasi-Newton
methods construct quasi-Newton matrices {Bk} which are low-rank updates to the
previous Hessian approximations for estimating ∇2L(wk) at each iteration. They
build a quadratic model of the objective function by using these quasi-Newton matri-
ces and use that model to find a sequence of search directions that can result in super-
linear convergence. Since these methods do not require the second-order derivatives,
they are more efficient than Newton’s method for large-scale optimization problems
(Nocedal and Wright, 2006).

There are various quasi-Newton methods proposed in the literature. They differ
in how they define and construct the quasi-Newton matrices {Bk}, how the search
directions are computed, and how the parameters of the model are updated (Nocedal
and Wright, 2006; Brust et al., 2017a,b; Le et al., 2011a).

5.1.2 Motivation and Objectives
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Broyden, 1970; Fletcher,
1970; Goldfarb, 1970; Shanno, 1970) is considered the most popular quasi-Newton
algorithm, which produces positive semidefinite matrix Bk for each iteration. The
conventional BFGS minimization employs line-search, which first attempts to find
the search directions by computing pk = −B−1

k ∇L(wk) and then decides on the step

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 80

size αk ∈ (0, 1] based on sufficient decrease and curvature conditions (Nocedal and
Wright, 2006) for each iteration k and then update the parameters wk+1 = wk+αkpk.
The line-search algorithm first tries the unit step length αk = 1 and if it does not
satisfy the sufficient decrease and the curvature conditions, it recursively reduces αk
until some stopping criteria (for example αk < 0.1).

Solving Bkpk = −∇L(wk) can become computationally expensive when Bk be-
comes a high-rank update. The Limited-memory BFGS (L-BFGS) method constructs
a sequence of low-rank updates to the Hessian approximation and consequently solv-
ing pk = B−1

k ∇L(wk) can be done efficiently. As an alternative to gradient descent,
limited memory quasi-Newton algorithms with line search have been implemented in
a deep learning setting (Le et al., 2011b). These methods approximate second deriva-
tive information improving the quality of each training iteration and circumvent the
need for application specific parameter tuning.

There are computational costs associated with the satisfaction of the sufficient
decrease and curvature conditions, as well as finding αk using line-search methods.
Also if the curvature condition does not satisfy for αk ∈ (0, 1], the L-BFGS matrix
may not stay positive definite, and the update will become unstable. On the other
hand, if the search direction is rejected in order to preserve the positive definiteness
of L-BFGS matrices, the progress of learning might stop or become very slow.

Trust-region methods attempt to find the search direction in a region within which
they trust the accuracy of the quadratic model of the objective function. These meth-
ods not only have the benefit of being independent from the fine-tuning of hyperapa-
rameters, but they may improve upon the training performance and the convergence
robustness of the line-search methods. Furthermore, trust-region L-BFGS methods
can easily reject the search directions if the curvature condition is not satisfied in order
to preserve the positive definiteness of the L-BFGS matrices (Rafati et al., 2018).

In this chapter, we introduce an L-BFGS quasi-Newton method based on a trust-
region strategy. This method is called Trust-Region Minimization Algorithm for
Training Responses (TRMinATR). We implement and employ this algorithm for a
classification task in the deep learning framework (Rafati et al., 2018). TRMinATR
solves the associated trust-region subproblem, which can be computationally inten-
sive in large scale problems, by efficiently computing a closed form solution at each
iteration. Based on the distinguishing characteristics of trust-region algorithms, un-
like line-search methods, the progress of the learning will not stop or slow down due
to the occasional rejection of the undesired search directions.

In order to construct the quasi-Newton matrices at each iteration, k, it is required
to start with an initial matrix, B0, that is often set to some multiple, B0 = γkI, of
the identity (Nocedal and Wright, 2006). Then, once B0 is given, the L-BFGS matri-
ces Bk can be constructed using the L-BFGS compact representation formula (Byrd
et al., 1994; Adhikari et al., 2017). The choice of the initial quasi-Newton matrix, B0,
is crucial because it has a direct impact on the quality of the approximation of the
Hessian (Erway et al., 2018; Wah and Chuei, 2013) and the robustness of L-BFGS
convergence. L-BFGS matrices are attempting the hard task of approximating the

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 81

indefinite Hessian matrix with positive definite matrices, which might result in false
negative curvature information. This motivates some researchers to prefer indefi-
nite quasi-Newton matrices such as Limited-memory Symmetric Rank One (L-SR1)
update over the L-BFGS. However, the L-SR1 methods, unlike L-BFGS, do not guar-
antee a descent direction. We hypothesize that by introducing an extra condition
for safe-guarding γk, the false negative curvature information can be avoided to some
degree when approximating the Hessian matrix in an L-BFGS framework. We note
that this work builds upon the results in (Erway et al., 2018) for defining γk.

Next, we discuss the choices for initializing L-BFGS matrices to obtain values
for the parameter γk that result in better training performance and generalization of
learning, without introducing significant computational cost. We define extra condi-
tions that require solving a general eigenvalue problem of form A∗z = λB∗z, where A∗
and B∗ are obtained from the compact representation of the L-BFGS matrix (Rafati
and Marcia, 2018). Consequently, solving this general eigenvalue problem does not
add significant computational cost. We test our hypothesis on a supervised learning
problem, namely the classification task of MNIST handwritten digits dataset, in the
trust-region L-BFGS framework.

5.2 Background
In this section, we will present preliminary information needed for a formal description
of the unconstrained optimization problem and second order optimization methods.
The majority of this section is based on Numerical Optimization book by Nocedal
and Wright (2006).

5.2.1 Unconstrained Optimization Problem
In the unconstrained optimization problem, we want to solve the minimization prob-
lem (5.1).

min
w
f(w), (5.2)

where f : Rn → R is a smooth function. A point w∗ is a global minimizer if
f(w∗) ≤ f(w) for all w ∈ Rd. Usually f is a nonconvex function and most algorithms
are only able to find the local minimizer. A point w∗ is a local minimizer if there
is a neighborhood N of w∗ such that f(w∗) ≤ f(w) for all w ∈ N . For convex
functions, every local minimizer is also a global minimizer, but this statement is not
valid for nonconvex functions. If f is twice continuously differentiable we may be able
to tell that w∗ is a local minimizer by examining the gradient ∇f(w∗) and the Hessian
∇2f(w∗). Let’s assume that the objective function, f , is smooth: the first derivative
(gradient) is differentiable and the second derivative (Hessian) is continuous. To study
the minimizers of a smooth function, Taylor’s theorem is essential.

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 82

Theorem 5.1 (Taylor’s Theorems). Suppose that f : Rn → R is continuously
differentiable. Consider p ∈ Rn such that f(w + p) is well defined, then we have

f(w + p) = f(w) +∇f(w + tp)Tp, for some t ∈ (0, 1). (5.3)

Also if f is twice continuously differentiable,

f(w + p) = f(w) +∇f(w + tp)Tp+ 1
2p

T∇2f(w + tp)p, for some t ∈ (0, 1). (5.4)

5.2.2 Recognizing A Local Minimum
Necessary conditions for optimality are described by the following theorems.

Theorem 5.2 (First-Order Necessary Conditions). If w∗ is a local minimizer of f
and f is continuously differentiable in an open neighborhood of w∗, then ∇f(w∗) = 0.

w∗ is stationary point if ∇f(w∗) = 0. Any local minimizer must be a stationary
point.

Theorem 5.3 (Second-Order Necessary Conditions). If w∗ is a local minimizer and
∇2f is continuous in an open neighborhood of w∗, then ∇f(w∗) = 0 and ∇2f(w∗) is
positive semidefinite.

The sufficient condition to guarantee that w∗ is a local minimizer is described in
the following theorem.

Theorem 5.4 (Second-Order Sufficient Conditions.). Suppose that ∇2f is continuous
in an open neighborhood of w∗ and ∇f(w∗) = 0 and ∇2f(w∗) is definite positive. Then
w∗ is a strict local minimizer of f .

5.2.3 Main Algorithms
All algorithms for unconstrained minimization require a starting point w0. Beginning
at w0, optimization algorithms generate a sequence of iterates {wk, k = 1, 2, . . . } that
terminate when either no more progress can be made or when it seems that a solution
point has been approximated with sufficient accuracy. There are three fundamental
strategies in deciding the new iterate wk+1 given the past iteration x0 to wk: the line
search, trust region and conjugate gradient methods.

5.3 Optimization Strategies
In this section, we briefly introduce two optimization strategies that are commonly
used in quasi-Newton methods, i.e., line search and trust-region methods (Nocedal
and Wright, 2006). Both methods seek to minimize the objective function L(w)
in (5.1) by defining a sequence of iterates {wk} which are governed by the search

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 83

Algorithm 12 Line Search Method pseudo-code.
Input: w0, tolerance ε > 0
k ← 0
repeat

Compute gk = ∇L(wk)
Calculate Bk

Compute search direction pk by solving (5.6)
find αk that satisfies Wolfe Conditions in (5.7)
k ← k + 1

until ‖gk‖ < ε or k reached to max number of iterations

direction pk. Each respective method is defined by its approach to computing the
search direction pk so as to minimize the quadratic model of the objective function
defined by

Qk(p) , gTk p+ 1
2p

TBkp, (5.5)

where gk , ∇L(wk) and Bk is an approximation to the Hessian matrix ∇2L(wk).
Note that Qk(p) is a quadratic approximation of L(wk + p) − L(wk) based on the
Taylor’s expansion in (5.4).

5.3.1 Line Search Method
Each iteration of a line search method computes a search direction pk by minimizing
a quadratic model of the objective function

pk = arg min
p∈Rn
Qk(p), (5.6)

and then decides how far to move along that direction. The iteration is given by
wk+1 = wk + αkpk, where αk is called the step size. If Bk is a positive definite
matrix, the minimizer of the quadratic function can be found as pk = −B−1

k gk. The
ideal choice for step size αk > 0 is the global minimizer of the univariate function
φ(α) = L(wk + αpk), but in practice αk is chosen to satisfy sufficient decrease and
curvature conditions, e.g., the Wolfe conditions (Wolfe, 1969; Nocedal and Wright,
2006) given by

L(wk + αkpk) ≤ L(wk) + c1αk∇L(wk)Tpk, (5.7a)
∇L(wk + αkpk)Tpk ≥ c2∇L(wk)Tpk, (5.7b)

with 0 < c1 < c2 < 1.
The general pseudo-code for the line search method is given in Algorithm 12 (see

Nocedal and Wright (2006) for details).

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 84

5.3.2 Trust-Region Qausi-Newton Method
Trust-region methods generate a sequence of iterates wk+1 = wk + pk, where each
search step, pk, is obtained by solving the following trust-region subproblem:

pk = argmin
p∈Rn

Qk(p) s.t. ‖p‖2 ≤ δk, (5.8)

where δk > 0 is the trust-region radius. The global solution to the trust-region sub-
problem (5.8) can be characterized by the optimality conditions given in the following
theorem due to Gay (1981) and Moré and Sorensen (1983).

Theorem 5.5. Let δk be a positive constant. A vector p∗ is a global solution of
the trust-region subproblem (5.8) if and only if ‖p∗‖2 ≤ δk and there exists a unique
σ∗ ≥ 0 such that B + σ∗I is positive semidefinite and

(B + σ∗I)p∗ = −g and σ∗(δ − ‖p∗‖2) = 0. (5.9)

Moreover, if B + σ∗I is positive definite, then the global minimizer is unique.

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

Newton
step

Global
minimum

Local
minimum

Figure 5.1: An illustration of trust-region methods. For indefinite matrices, the
Newton step (in red) leads to a saddle point. The global minimizer (in blue) is
characterized by the conditions in Eq. (5.9) with B + σ∗I positive semidefinite. In
contrast, local minimizers (in green) satisfy Eq. (5.9) with B + σ∗I not positive
semidefinite.

The computational bottleneck of trust-region methods is the solution of the trust-
region subproblem (5.8). However, recent work (see Brust et al. (2017b) and Burdakov

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 85

Algorithm 13 Trust region method pseudo-code.
Input: w0, ε > 0, δ̂ > 0, δ0 ∈ (0, δ̂), η ∈ [0, 1/4)
k ← 0
repeat

Compute gk = ∇L(wk)
Construct quasi-Newton matrix Bk

Compute search direction pk by solving (5.8)
ared← L(wk)− L(wk + pk)
pred← −Qk(pk)
ρk ← ared/pred
Update trust-region radius δk
if ρk > η then

wk+1 = wk + pk
else

wk+1 = wk
end if
k ← k + 1

until ‖gk‖ < ε

et al. (2016)) has shown that (5.8) can be efficiently solved if the Hessian approxima-
tion, Bk, is chosen to be a quasi-Newton matrix, which we describe next. (For further
details on trust-region methods, see Conn et al. (2000).)

The general pseudo-code for the trust region method is given in Algorithm 13.
(see Algorithm 6.2 of Nocedal and Wright (2006) for details).

5.4 Quasi-Newton Optimization Methods
Methods that use Bk = ∇2L(wk) for the Hessian in the quadratic model in (5.5) typi-
cally exhibit quadratic rates of convergence. However, in large-scale problems (where
n and N are both large), computing the true Hessian explicitly is not practical. In this
case, quasi-Newton methods are viable alternatives because they exhibit super-linear
convergence rates while maintaining memory and computational efficiency. Instead of
the true Hessian, quasi-Newton methods use an approximation, Bk, which is updated
after each step to take into account the additional knowledge gained during the step.

Quasi-Newton methods, like gradient descent methods, require only the compu-
tation of first-derivative information. They can construct a model of the objective
function by measuring the changes in the consecutive gradients for estimating the
Hessian. Most methods store the displacement, sk , wk+1 − wk, and the change of
gradients, yk , ∇L(wk+1)−∇L(wk), to construct the Hessian approximations, {Bk}.
The quasi-Newton matrices are required to satisfy the secant equation, Bk+1sk = yk.
Typically, there are additional conditions imposed on Bk+1, such as symmetry (since
the exact Hessian is symmetric), and a requirement that the update to obtain Bk+1

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 86

from Bk is low rank, meaning that the Hessian approximations cannot change too
much from one iteration to the next. Quasi-Newton methods vary in how this update
is defined. The matrices are defined recursively with the initial matrix, B0, taken to
be B0 = λk+1I, where the scalar λk+1 > 0.

5.4.1 The BFGS Update
Perhaps the most well-known among all of the quasi-Newton methods is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update (Liu and Nocedal, 1989; Nocedal and Wright,
2006), given by

Bk+1 = Bk −
1

sTkBksk
BksksTkBk + 1

yTk sk
ykyTk . (5.10)

The BFGS method generates positive-definite approximations whenever the initial
approximation B0 is positive definite and sTk yk > 0.

5.4.2 The SR1 Update
The symmetric-rank-1 (SR1) is a simpler rank-1 update that maintains symmetry of
the matrix and satisfies the secant equation. The SR1 update formula is given by

Bk+1 = Bk + (yk −Bksk)(yk −Bksk)T
(yk −Bksk)T sk

. (5.11)

To prevent SR1 from breaking down, the updates where |sTk (yk − Bksk)| is close to
zero should be skipped. Unlike the BFGS formula, SR1 is not guaranteed to gener-
ate positive definite matrices Bk. However, good numerical results and convergence
properties have been reported with algorithms based on SR1 (Nocedal and Wright,
2006).

5.4.3 Compact Representations
Both BFGS and SR1 updates are low rank, and their matrices can be represented in
a compact form

Bk = B0 + ΨkMkΨT
k . (5.12)

To compute a compact representation, we store sk and yk into columns of matrices
Sk, and Yk

Sk , [s0 . . . sk−1], Yk , [y0 . . . yk−1]. (5.13)

Ψk and Mk for BFGS are defined as

Ψk =
[
B0Sk Yk

]
, Mk =

−STk B0Sk −Lk
−LTk Dk


−1

, (5.14)

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 87

and Lk is the strictly lower triangular part and Dk is the diagonal part of the matrix
STk Yk, i.e., STk Yk = Lk +Dk +Uk, where Uk is a strictly upper triangular matrix. (See
Byrd et al. (1994) for further details.) Ψk and Mk for SR1 are defined as in Brust
et al. (2017b)

Ψk = Yk −B0Sk, (5.15a)
Mk = (Dk + Lk + LTk − STk B0Sk)−1. (5.15b)

5.4.4 Limited-Memory quasi-Newton methods
It is common in large-scale problems to store only the m most-recently computed pairs
{(sk,yk)}, where typically m ≤ 100. This approach is often referred to as limited-
memory BFGS (L-BFGS) when the BFGS formula is used, or limited-memory SR1
(L-SR1) when the SR1 update is used.

5.4.5 Trust-Region Subproblem Solution
To efficiently solve the trust-region subproblem (5.8), we exploit the compact repre-
sentation of the BFGS or SR1 matrix to obtain a global solution based on optimality
conditions (5.9). In particular, we compute the spectral decomposition of Bk using the
compact representation of Bk. First, we obtain the QR factorization of Ψk = QkRk,
where Qk has orthonormal columns and Rk is strictly upper triangular. Then we
compute the eigendecomposition of RkMkR

T
k = VkΛ̂kV

T
k , so that

Bk = B0 + ΨkMkΨT
k = γkI +QkVkΛ̂kV

T
k Q

T
k . (5.16)

Note that since Vk is an orthogonal matrix, the matrixQkVk has orthonormal columns.
Let P = [QkVk (QkVk)⊥] ∈ Rn×n, where (QkVk)⊥ is a matrix whose columns form an
orthonormal basis for the orthogonal complement of the range space of QkVk, thereby
making P an orthonormal matrix. Then

Bk = P

Λ̂ + γkI 0
0 γkI

P T . (5.17)

Using this eigendecomposition to change variables and diagonalize the first optimality
condition in (5.9), a closed form expression for the solution p∗k can be derived.

The general solution for the trust-region subproblem using the Sherman-Morrison-
Woodbury formula is given by

p∗k = − 1
τ ∗

[
I −Ψk(τ ∗M−1

k + ΨT
kΨk)−1ΨT

k

]
gk, (5.18)

where τ ∗ = γk + σ∗, and σ∗ is the optimal Lagrange multiplier in (5.9) (see Brust
et al. (2017b) for details).

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 88

Figure 5.2: A LeNet deep learning network inspired by the architecture found in
LeCun and Others (2015) . The neural network is used in the classification of the
MNIST dataset of hand written digits. The convolutional neural network (CNN)
uses convolutions followed by pooling layers for feature extraction. The final layer
transforms the information into the required probability distribution.

5.5 Experiment on L-BFGS Line Search vs. Trust
Region

In this section, we compare the line search L-BFGS optimization method with our pro-
posed Trust-Region Minimization Algorithm for Training Responses (TRMinATR).
The goal of the experiment is to perform the optimization necessary for neural net-
work training. Both methods are implemented to train the LeNet-5 architecture with
the purpose of image classification of the MNIST dataset. All simulations were per-
formed on an AWS EC2 p2.xlarge instance with 1 Tesla K80 GPU, 64 GiB memory,
and 4 Intel 2.7 GHz Broadwell processors. For the scalars c1 and c2 in the Wolfe line
search condition, we used the typical values of c1 = 10−4 and c2 = 0.9 (Nocedal and
Wright, 2006). All code is implemented in the Python language using TensorFlow
and it is available at https://rafat.net/lbfgs-tr.

5.5.1 LeNet-5 Convolutional Neural Network Architecture
We use the convolutional neural network architecture, LeNet-5 (Figure 5.2) for com-
puting the likelihood pi(yi|xi;wi). The LeNet-5 CNN is mainly used in the literature
for character and digit recognition tasks (Lecun et al., 1998). The details of layers’
connectivity in LeNet-5 CNN architecture is given in Table 5.1. The input to the net-
work is 28× 28 image and the output is 10 neurons followed by a softmax function,
attempting to approximate the posterior probability distribution p(yi|xi;w). There
are a total of n = 431, 080 trainable parameters (weights) in LeNet-5 CCN.

5.5.2 MNIST Image Classification Task
The convolutional neural network was trained and tested using the MNIST Dataset
(LeCun, 1998). The dataset consists of 70,000 examples of handwritten digits with
60,000 examples used as a training set and 10,000 examples used as a test set. The

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 89

Table 5.1: LeNet-5 CNN architecture (Lecun et al., 1998).

Layer Connections
0: input 28× 28 image
1 convolutional, 20 5× 5 filters (stride = 1), followed by ReLU
2 max pooling, 2× 2 window (stride = 2)
3 convolutional, 50 5× 5 filters (stride = 1), followed by ReLU
4 max pool, 2× 2 window (stride = 2)
5 fully connected, 500 neurons (no dropout)

followed by ReLU
6: output fully connected, 10 neurons followed by softmax (no dropout)

digits range from 0 - 9 and their sizes have been normalized to 28x28 pixel images.
The images include labels describing their intended classification. The MNIST dataset
consists of 70, 000 examples of handwritten image of digits 0 to 9, with N = 60, 000
image training set {(xi, yi)}, and 10, 000 used as the test set. Each image xi is a
28 × 28 pixel, and each pixel value is between 0 and 255. Each image xi in the
training set include a label yi ∈ {0, . . . , 9} describing its class. The objective function
for the classification task in (5.1) uses the cross entropy between model prediction
and true labels given by

`i(w) = −
J∑
j=1

yij log(pi), (5.19)

where the pi(xi;w) = pi(y = yi|xi;w) is the probability distribution of the model,
i.e., the likelihood that the image is correctly classified, J is the number of classes
(J = 10 for MNIST digits dataset) and yij = 1 if j = yi and yij = 0 if j 6= yi (see
Hastie et al. (2009) for details).

5.5.3 Results
The line search algorithm and TRMinATR perform comparably in terms of loss and
accuracy. This remains consistent with different choices of the memory parameter
m (see Fig. 5.4). The more interesting comparison is that of the training accuracy
and the test accuracy. The two metrics follow each other closely. This is unlike the
typical results using common gradient descent based optimization. Typically, the test
accuracy is delayed in achieving the same results as the train accuracy. This would
suggest that the model has a better chance of generalizing beyond the training data.

We also report that the TRMinATR significantly improves on the computational
efficiency of the line-search method when using larger batch sizes. This could be

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 90

2 4 6 8 10 12

number of multi batch

1000

2000

3000

ti
m

e(
s)

loop time for 200 iterations

line-search m =5

trust-region m =5

line-search m =10

trust-region m =10

line-search m =15

trust-region m =15

line-search m =20

trust-region m =20

Figure 5.3: We compare the loop time for 200 iterations of the line-search and trust-
region quasi-Newton algorithms for different batch sizes. As the number of multi
batches increase, the size of each batch decreases. Both methods were tested using
different values of the memory parameter m.

the result of the line-search method’s need to satisfy certain Wolfe conditions at
each iteration. There is also an associated computational cost when verifying that
the conditions for sufficient decrease are being met. When the batch size decreases,
the trust-region method continues to outperform the line-search method. This is
especially true when less information is used in the Hessian approximation (see Fig.
5.3).

5.6 Proposed Quasi-Newton Matrix Initializations
The most common choice for initializing quasi-Newton methods is a scalar multiple
of the identity matrix, i.e., B0 = γkI for γk > 0. In this section, we examine three
choices for the scalar parameter γk. In particular, we label these choices as Method
I, Method II, and Method III.

5.6.1 Initialization Method I
A conventional method to choose γk for L-BFGS is

γk = yTk−1yk−1

sTk−1yk−1
. (5.20)

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 91

0 50 100 150 200

iterations

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

line-search m =15, full batch – (train loss)

line-search m =15, full batch – (test loss)

trust-region m =15, full batch – (train loss)

trust-region m =15, full batch – (test loss)

0 50 100 150 200

iterations

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

line-search m =15, full batch – (train accuracy)

line-search m =15, full batch – (test accuracy)

trust-region m =15, full batch – (train accuracy)

trust-region m =15, full batch – (test accuracy)

(a) (b)

0 50 100 150 200

iterations

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

line-search m =20, full batch – (train loss)

line-search m =20, full batch – (test loss)

trust-region m =20, full batch – (train loss)

trust-region m =20, full batch – (test loss)

0 50 100 150 200

iterations

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

line-search m =20, full batch – (train accuracy)

line-search m =20, full batch – (test accuracy)

trust-region m =20, full batch – (train accuracy)

trust-region m =20, full batch – (test accuracy)

(c) (d)

0 50 100 150 200

iterations

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

line-search m =15, half batch – (train loss)

line-search m =15, half batch – (test loss)

trust-region m =15, half batch – (train loss)

trust-region m =15, half batch – (test loss)

0 50 100 150 200

iterations

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

line-search m =15, half batch – (train accuracy)

line-search m =15, half batch – (test accuracy)

trust-region m =15, half batch – (train accuracy)

trust-region m =15, half batch – (test accuracy)

(e) (f)

0 50 100 150 200

iterations

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

line-search m =20, half batch – (train loss)

line-search m =20, half batch – (test loss)

trust-region m =20, half batch – (train loss)

trust-region m =20, half batch – (test loss)

0 50 100 150 200

iterations

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

line-search m =20, half batch – (train accuracy)

line-search m =20, half batch – (test accuracy)

trust-region m =20, half batch – (train accuracy)

trust-region m =20, half batch – (test accuracy)

(g) (h)

Figure 5.4: Loss and accuracy for the training and test sets, using L-BFGS line-search,
and L-BFGS trust-region methods. (a) & (b) m = 15, and full-batch (all data is used
to compute the gradients at each iteration). (c) & (d) m = 15, and Full-batch. (e) &
(f) m = 15, and half-batch. (g) & (h) m = 20, and half-batch.

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 92

Table 5.2: Summary of the proposed L-BFGS initialization Methods

Initialization Formula

Method I
Solve the optimization problem (5.21):

γk = max
{

1, y
T
k−1yk−1

sT
k−1yk−1

}
γk = arg minγ ‖B−1

0 yk−1 − sk−1‖2
2

Method II
Solve the generalized eigenvalue problem (5.25):

(Lk +Dk + LTk)z = λSTk Skz

γk =

max{1, 0.9λmin} if λmin > 0,
Use Method I if λmin ≤ 0.

Method III
Solve the generalized eigenvalue problem (5.29):

A∗z = B∗λz

γk =

max{1, 0.9λmin} if λmin > 0,
Use Method I if λmin ≤ 0.

This choice is proposed for optimal conditioning, and it can be viewed as a spectral
estimate for Hessian ∇2L(wk). The parameter γk is the minimizer of the optimization
problem

γk = arg min
γ
‖B−1

0 yk−1 − sk−1‖2
2, (5.21)

where B−1
0 = γ−1I. We put a lower bound on γk = max(ε, γk), where ε > 0, to avoid

producing sequences of nearly singular quasi-Newton matrices (Brust et al., 2017a).
In our experiments, we used ε = 1.0.

5.6.2 Initialization Method II
The second method for finding γk for initialization of B0 = γkI requires solving a
general eigenvalue problem. This method is inspired by (Erway et al., 2018) where
γk is chosen in a way that avoids the false curvature information for the limited-
memory Symmetric Rank-1 (L-SR1) trust-region method. We summarize the method
described in Erway et al. (2018) below.

Consider a quadratic objective function of the form

L(w) = 1
2w

THw + gTw, (5.22)

where H ∈ Rn×n is symmetric and w, g ∈ Rn. The true Hessian, ∇2L(w), is equal to

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 93

matrix H. Note that for this quadratic function, we have

∇L(wk+1)−∇L(wk) = Hwk+1 + g − (Hwk − g) = H(wk+1 − wk). (5.23)

Equivalently, yk = Hsk for all k. Therefore, HSk = Yk and consequently, STkHSk =
STk Yk. Using the compact representation of Bk in (5.12) with B0 = γkI for this
quadratic function, we obtain

STkHSk − γkSTk Sk = STk ΨkMkΨT
k Sk. (5.24)

Note that if H is not positive definite, then STk ΨkMkΨT
k Sk may not be positive definite

either. Therefore, by choosing γk > 0, negative curvature information of H can be
captured by STk ΨkMkΨT

k Sk. IfH is positive definite and γk is chosen too big, then false
negative curvature information can be produced. To avoid this undesired outcome,
we choose γk ∈ (0, λmin) where λmin is the minimum eigenvalue of the following
generalized eigenvalue problem:

(Lk +Dk + LTk)z = λSTk Skz, (5.25)

where Lk is the strictly lower triangular part, and Dk is the diagonal part of
the matrix STk Yk as defined in Section 5.4.3. If the smallest eigenvalue in (5.25) is
negative, i.e., λmin < 0, we choose γk from Method I instead.

5.6.3 Initialization Method III
We note that in (5.24), the right-hand side also depends on γk because the matrices
Ψk amd Mk depend on γk (see (5.14)). Yet the generalized eigenvalue value problem
(5.25) for determining bounds on γk does not take this into account. In Method III,
we attempt to derive the generalized eigenvalue problem considering the dependency
of matrices Mk and Ψk on γk as defined in (5.14).

First, we compute the inverse of Mk explicitly using the following block partition-
ing:

Mk =

−γSTk Sk −Lk
−LTk Dk


−1

=

 Ã B̃

B̃T D̃

 (5.26)

where Ã, B̃, and D̃ are computed as follows:

Ã = −(γSTk Sk + LkD
−1
k LTk)−1

B̃ = −(γSTk Sk + LkD
−1
k LTk)−1LkD

−1
k

D̃ = D−1
k −D−1

k LTk (γSTk Sk + LkD
−1
k LTk)LkD−1

k .

(5.27)

By substituting Mk from (5.26) and Ψk = [γSk Yk] into (5.24), we have

STkHSk = γSTk Sk + STk YkD̃Y
T
k Sk + γ2

(
STk SkÃS

T
k Sk

)
+ γ

(
STk SkB̃Y

T
k S

T
k + STk YkB̃

TSTk Sk
)
. (5.28)

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 94

The last two terms in (5.28) depend nonlinearly on γ. To find a linear condition for
safe-guarding γk, we compute these nonlinear terms in (5.28) using the γ parameter
from the previous iteration, i.e. γk−1 (with initial value of γ0 = 1). Then, to find an
upper bound for γk, we solve the following generalized eigenvalue problem:

A∗z = λB∗z, (5.29)

where A∗ and B∗ is defined as

A∗ = Lk+Dk+LTk − STk YkD̃Y T
k Sk− γ2

k−1(STk SkÃSTk Sk),
B∗ = STk Sk + STk SkB̃Y

T
k S

T
k + STk YkB̃

TSTk Sk.
(5.30)

As in Method II, if λmin < 0 in (5.29), we choose γk from Method I.

5.7 Experiments on L-BFGS Initialization
In this section, we test the trust-region L-BFGS optimization algorithm on the image
classification task of the MNIST dataset with the three different initialization methods
for B0 discussed in Section 5.6. All simulations were performed on a cluster with one
NVIDIA Tesla K20m GPU, 256 GB memory, and 20 virtual Intel 1.2 GHz processors.

All methods for this experiment are implemented to train the LeNet-5 convolu-
tional neural network for the image classification task of the MNIST dataset. See
Figure 5.2, and Table 5.1 for LeNet-5 architecture. For details on MNIST image
classification task see subsection 5.5.2.

All code is implemented in the Python language using TensorFlow, NumPy and
SciPy libraries and it is available at http://rafati.net/l-bfgs-tr-init-methods.

5.7.1 Computing Gradients
Computing the gradient, ∇L(w), can be expensive when the size of the dataset is
large. In addition, some of the data points are similar, and consequently, usually a
smaller random sample S can be used to estimate the loss and the gradients

L(W) ≈ L(S)(w) = 1
|S|

∑
i∈S

`i(w), (5.31)

∇L(w) ≈ ∇L(S)(w) = 1
|S|

∑
i∈S
∇`i(w) (5.32)

where, `i is the cross entropy between model prediction, pi and true labels, yi and S
is a random subset of indices from {1, 2, . . . , N}.

5.7.2 Multi-batch Sampling
The quality of the gradients directly impacts the quality of the search step and also the
quality of approximation of the Hessian matrix. We performed our experiments using

http://rafati.net/l-bfgs-tr-init-methods

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 95

different data-to-sample ratio N/|S| ∈ {1, 2.5, 5, 12.5, 25, 50, 100, 250, 500, 1000}. In
particular, the smaller N/|S| becomes, the larger the batch size, |S| becomes. There
were an overlap between consecutive samples Sk and Sk+1 for the each iteration of
the trust-region algorithm (Algorithm 13). For iteration k, we used Sk to compute
the gradient gk = ∇L(Sk)(wk).

5.7.3 Computing yk

Inspired by Berahas et al. (2016), we use the overlap between the consecutive multi-
batch samples Ok = Sk ∩ Sk+1 to compute yk as

yk = ∇L(Ok)(wk+1)−∇L(Ok)(wk). (5.33)

The use of overlap to compute yk has been shown to result in more robust con-
vergence in L-BFGS since L-BFGS uses gradient differences to update the Hessian
approximations (see Berahas et al. (2016); Erway et al. (2018)).

5.7.4 Other Parameters
We performed the experiments for two choices of the quasi-Newton memory storage
m ∈ {10, 20}. All simulations stopped after 300 iterations or if the gradient satisfied
‖gk‖2 < ε = 10−5.

5.7.5 Results and Discussions
The results of training using the trust-region L-BFGS algorithm with different initial-
ization methods (Method I, Method II, and Method III), different multi-batch
samples (1 ≤ N/|S| ≤ 1000), and different memory sizes, m, are depicted in Fig.
5.5. For each simulation, the training and test losses, the training and test accuracy,
and the total time of simulation were stored. The minimum losses for both training
and test sets for m = 10 are plotted in Fig. 5.5(a), for different sample sizes. Note
that N/|S| increases from left to right, meaning that the multi-batch sample size
is becoming smaller. For larger sample sizes (e.g., for smaller values of N/|S|), the
initialization Method I, which is commonly used in the literature, performs the best.
However, as the mini-batch sample size decreases (e.g., for N/|S| > 100), Methods II
and III outperforms Method I. For instance, the minimum training loss for Method
II for N/|S| = 500 is 2.87 times (287%) lower than the one for Method I, and the
test loss for the same simulation is 120% lower. For N/|S| = 1000, the training loss
is 286% lower and the test loss is ∼ 79% lower. The training loss for Method III
is 131% lower than the one for Method I for N/|S| = 500, and it is 450% lower
for N/|S| = 1000. The test loss is 58% lower for N/|S| = 500 and 100% lower for
N/|S| = 1000.

Similar phenomena can be observed for the training and test loss form = 20, which
is plotted in Fig. 5.5(b). The minimum training loss for simulations with initialization

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 96

Method II is ∼ 846% lower for N/|S| = 500, and test loss is ∼ 178% lower. The
training loss with Method III is ∼ 279% lower than Method I for N/|S| = 250 and
the test loss is ∼ 98% lower. The training loss with Method III is ∼ 426% lower for
N/|S| = 500 and the test loss is ∼ 125% lower.

The training and test maximum accuracy for m = 10 is reported in Fig. 5.5(c), and
we see similar improvements using Methods II and III for simulations with smaller
multi-batch sample sizes (N/|S| ≥ 100). Our proposed initialization methods results
improves the test accuracy of prediction from 94.3% using Method I to 97.4% using
Method II and to 96.3% using Method III, when N/|S| = 500. We saw similar
behavior in the maximum train and test accuracy for m = 20, which is plotted in Fig.
5.5(d). The maximum test accuracy improved from 93% using Method I to 97.5%
when we used our proposed Method II, and we saw an improvement to 96.8% when
we used the proposed initialization Method III.

The total training time for m = 10 is reported in Fig. 5.5(e). There is only ∼1%
average increase in training time for simulations using Method II, and ∼ 10% average
increase in training time for simulations using Method III, in comparison to Method I.
Similarly, for the training run time for simulations with larger storage memory m = 20
in Fig. 5.5(f), there is no significant difference between Method II and Method I, but
Method III was about 10% slower than the Method I.

The initialization Method I given in (5.20), which is conventionally used in the
literature (Nocedal and Wright, 2006; Brust et al., 2017a), is simple to compute and
usually is a great choice when the sample size is considerably large, i.e. (|S|/N ≥ 1%
or N/|S| ≤ 100). However, once the sample sizes gets smaller, i.e. (|S|/N < 1% or
N/|S| > 100), the performance drops dramatically.

Our proposed initialization Method II (based on Erway et al. (2018)) introduces
a new condition on safeguarding γk by finding an upper bound which requires solving
a low-rank general eigenvalue problem which does not add significant computational
cost. For smaller sample sizes (|S|/N < 1% or N/|S| > 100), this initialization
method outperformed Method I in all training and testing minimum loss and max-
imum accuracy performance measures. However this method does not consider the
fact that Ψk and Mk are functions of γk when constructing the general eigenvalue
problem in (5.25).

Our proposed initialization Method III introduces a more sophisticated condition
on safeguarding γk. The key difference between this method and Method II is that
this method takes into account that Ψk and Mk are functions of γk when defining
the generalized eigenvalue problem in (5.29). The computation of A∗ and B∗ adds
about 10% to the computational cost. For smaller sample sizes i.e. (|S|/N < 1% or
N/|S| > 100) this initialization method also outperformed the initialization Method
I in all training and testing minimum loss and maximum accuracy performance mea-
sures. There was no significant difference in performance of the training when using
initialization Methods II and III.

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 97

m = 10 m = 20

100 101 102 103

N/|S|

0.00

0.05

0.10

0.15

0.20

0.25

L
os

s
L

Train and Test Minimum Loss
Train – Init Method I

Train – Init Method II

Train – Init Method III

Test – Init Method I

Test – Init Method II

Test – Init Method III

100 101 102 103

N/|S|

0.00

0.05

0.10

0.15

0.20

L
os

s
L

Train and Test Minimum Loss
Train – Init Method I

Train – Init Method II

Train – Init Method III

Test – Init Method I

Test – Init Method II

Test – Init Method III

(a) (b)

100 101 102 103

N/|S|

92

94

96

98

100

A
cc

ur
ac

y
(%

)

Train and Test Maximum Accuracy

Train – Init Method I

Train – Init Method II

Train – Init Method III

Test – Init Method I

Test – Init Method II

Test – Init Method III

100 101 102 103

N/|S|

94

96

98

100

A
cc

ur
ac

y
(%

)

Train and Test Maximum Accuracy

Train – Init Method I

Train – Init Method II

Train – Init Method III

Test – Init Method I

Test – Init Method II

Test – Init Method III

(c) (d)

100 101 102 103

N/|S|

1000

2000

3000

4000

5000

6000

T
im

e
(s

)

Training time

Init Method I

Init Method II

Init Method III

100 101 102 103

N/|S|

1000

2000

3000

4000

5000

6000

T
im

e
(s

)

Training time

Init Method I

Init Method II

Init Method III

(e) (f)

Figure 5.5: A trust-region algorithm with different L-BFGS initialization methods is
used for training LeNet-5 CNN to learn the task of classification of the MNIST digits
set. The performance of learning is depicted for different sample batch sizes S and
different memory storage m = 10 and m = 20. N is the size of data and |S| is the
size of the sample batch. (a) Train and test minimum loss for m = 10. (b) Train and
test minimum loss for m = 20. (c) Train and test maximum accuracy for m = 10.
(d) Train and test maximum accuracy for m = 20. (e) Training time for m = 10. (f)
Training time for m = 20.

Chapter 5. Trust-Region Methods for Empirical Risk Minimization 98

5.8 Future Work
The true Hessian is indefinite, and using indefinite quasi-Newton matrices, like Sym-
metric Rank 1 (SR1), or Full Broyden Class (FBC) within trust-region methods might
lead to better convergence properties. We will study these methods in a future work.

5.9 Conclusions
In this chapter, we implemented an optimization method based on the limited mem-
ory quasi-Newton method known as L-BFGS as an alternative to the gradient descent
methods typically used to train deep neural networks. We considered both line-search
and trust-region frameworks. The contribution of this research is an algorithm known
as TRMinATR which minimizes the cost function of the neural network by efficiently
solving a sequence of trust-region subproblems using low-rank Hessian approxima-
tions. The benefit of the method is that the algorithm is free from the constraints
of data specific parameters seen in traditionally used methods. TRMinATR also
improves on the computational efficiency of a similar line search implementation.

We also investigated three methods for initializing L-BFGS matrices in a trust-
region optimization framework. The L-BFGS quasi-Newton matrix attempts to ap-
proximate the curvature information of the Hessian matrix, ∇2L(wk), with a positive
definite quasi-Newton matrix, Bk. In each iteration, k, an initial matrix, B0, is re-
quired, and the usual choice for B0 is a non-negative scalar multiple of the identity
matrix, i.e., B0 = γkI, with γk > 0. The Hessian matrix, ∇2L(wk), can be indefinite
if L(w) is nonconvex, and a careless initialization of the quasi-Newton matrix can
have the undesired effect of definiteness mismatch between the true Hessian and the
quasi-Newton Hessian approximation. We investigated three methods for the initial
matrix, B0 = γkI. See Table 5.2 for a summary of the initialization methods. We
also experimented on the effects of initialization on the performance of training the
LeNet-5 CNN on the classification task of the MNIST handwritten digits dataset.

Chapter 6

Quasi-Newton Optimization in
Deep Reinforcement Learning

Abstract
Reinforcement Learning (RL) algorithms allow artificial agents to improve their ac-
tion selections so as to increase rewarding experiences in their environments. The
learning can become intractably slow as the state space of the environment grows.
This has motivated methods like Q-learning to learn representations of the state by
a function approximator. Impressive results have been produced by using deep artifi-
cial neural networks. However, deep RL algorithms require solving a nonconvex and
nonlinear unconstrained optimization problem. Methods for solving the optimization
problems in deep RL are typically restricted to the class of first-order algorithms,
such as stochastic gradient descent (SGD). The major drawback of the SGD methods
is that they have the undesirable effect of not escaping saddle points and their perfor-
mance can be seriously obstructed by ill-conditioning. Furthermore, SGD methods
require trial and error to fine-tune many learning parameters. Using second deriva-
tive information can result in improved convergence properties, but computing the
Hessian matrix for large-scale problems is not practical. Quasi-Newton methods re-
quire only first-order gradient information, like SGD, but they can construct a low
rank approximation of the Hessian matrix and result in superlinear convergence. The
limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) approach is one of the
most popular quasi-Newton methods that constructs positive definite Hessian approx-
imations. In this chapter, we introduce an efficient optimization method, based on
the limited memory BFGS quasi-Newton method using the line search strategy –
as an alternative to SGD methods. Our method bridges the disparity between first
order methods and second order methods by continuing to use gradient information
to calculate a low-rank Hessian approximations. We provide a formal convergence
analysis, as well as empirical results on a subset of the classic ATARI 2600 games.
Our results show a robust convergence with preferred generalization characteristics,
as well as fast training time and no need for an experience replaying mechanism.

99

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 100

6.1 Introduction
One of the challenges that arise in real-world reinforcement learning (RL) problems
is the “curse of dimensionality”. Nonlinear function approximators coupled with rein-
forcement learning have made it possible to learn abstractions over high dimensional
state spaces (Sutton, 1996; Rafati and Noelle, 2015, 2017; Melo et al., 2008). Success-
ful examples of using neural networks for reinforcement learning include learning how
to play the game of Backgammon at the Grand Master level (Tesauro, 1995). More
recently, researchers at DeepMind Technologies used a deep Q-learning algorithm to
play various ATARI games from the raw screen image stream (Mnih et al., 2013,
2015). The Deep Q-learning algorithm (Mnih et al., 2013) employed a convolutional
neural network (CNN) as the state-action value function approximation. The result-
ing performance on these games was frequently at or better than the human level. In
another effort, DeepMind used deep CNNs and a Monte Carlo Tree Search algorithm
that combines supervised learning and reinforcement learning to learn how to play
the game of Go at a super-human level (Silver et al., 2016).

The majority of deep learning problems, including deep RL algorithms, require
solving an unconstrained optimization of a highly nonlinear and nonconvex objective
function of the form

min
w∈Rn

L(w) = 1
N

N∑
i

`i(w) (6.1)

where w ∈ Rn is the vector of trainable parameters of the CNN model, n is the
number of parameters, N is the number of observations in a training dataset (or
RL agent’s experience memory), and `i is a function of the ith observation. There
are various algorithms proposed in machine learning and optimization literature to
solve (6.1). Among those, there are first-order methods such as stochastic gradient
descent (SGD) methods (Robbins and Monro, 1951) and quasi-Newton methods (Le
et al., 2011b). For instance, a variant of the SGD method was used in DeepMind’s
implementation of deep Q-Learning algorithm (Mnih et al., 2015).

Since both n and N are large in large-scale problems, the computation of the
true gradient, ∇L(w), is expensive and, additionally, the computation of the true
Hessian, ∇2L(w), is not practical. At each iteration of learning, SGD methods use
a small random sample of data, Jk, to compute an approximation of the gradient of
the objective function, ∇(Jk)L(wk), and they use the opposite of that vector as the
search direction, pk = −∇(Jk)L(wk). The computational cost-per-iteration of SGD
algorithms is small, making them the most widely used optimization method for the
vast majority of deep learning and deep RL applications.

However, these methods require the fine-tuning of many hyperparameters, includ-
ing the learning rates, αk. The learning rates are usually chosen to be very small
to decrease the undesirable effect of the noisy stochastic gradient. Therefore, deep
RL methods based on SGD algorithms require storing a large memory of recent ex-
periences into a experience replay memory D and replaying this memory repeatedly.

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 101

Another major drawback of the SGD methods is that they struggle with saddle-points
and the problem ill-conditioning that occur in most of the nonconvex optimization
and has the undesirable effect on the model’s generalization of learning (Bottou et al.,
2018).

Using second-order curvature information can help produce more robust conver-
gence for nonconvex optimization problems (Nocedal and Wright, 2006; Bottou et al.,
2018). An example of a second-order method is Newton’s method, where the Hes-
sian matrix, ∇2L(w), and the gradient, ∇L(w), are used to find the search direction,
pk = −∇2L(wk)−1∇L(wk), and then a line-search method is used to find the step
length along the search direction. The main bottleneck in second-order methods is
the serious computational challenges involved in computing the Hessian, ∇2L(w), for
deep reinforcement learning problems, which is not practical when n is large. Quasi-
Newton methods and Hessian-free methods both use approaches to approximate the
Hessian matrix without computing and storing the true Hessian matrix, ∇2L(w).

Quasi-Newton methods form an alternative class of first-order methods for solv-
ing the large-scale nonconvex optimization problem in deep learning (Nocedal and
Wright, 2006; Erway et al., 2018; Rafati et al., 2018). These methods, like SGD, re-
quire only computing the first-order gradient of the objective function. By measuring
and storing the difference between consecutive gradients, quasi-Newton methods con-
struct quasi-Newton matrices, {Bk}, which are low-rank updates to previous Hessian
approximations for estimating ∇2L(wk) at each iteration. They build a quadratic
model of the objective function by using these quasi-Newton matrices and use that
model to find a sequence of search directions that can result in superlinear conver-
gence. Since these methods do not require the second-order derivatives, they are more
efficient than Newton’s method for large-scale optimization problems (Nocedal and
Wright, 2006).

There are various quasi-Newton methods proposed in literature. They differ in
how they define and construct the quasi-Newton matrices {Bk}, how the search di-
rections are computed, and how the parameters of the model are updated. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970) is one of the most well-regarded quasi-Newton algo-
rithm, producing a positive semidefinite matrix, Bk, for each iteration.

The Limited-memory BFGS (L-BFGS) method constructs a sequence of low-rank
updates to the Hessian approximation and, consequently, solving pk = B−1

k ∇L(wk)
can be done efficiently. Methods based on L-BFGS quasi-Newton have been imple-
mented and employed for the image classification task in the deep learning framework
and impressive results have been produced (Rafati et al., 2018; Rafati and Marcia,
2018; Berahas et al., 2016; Le et al., 2011a).

These methods approximate second derivative information, improving the quality
of each training iteration and circumventing the need for application-specific param-
eter tuning. Given that quasi-Newton methods are efficient in supervised learning
problems (Bottou et al., 2018), an important question arises: Is it also possible to
use quasi-Newton methods to learn the state representations in deep reinforcement

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 102

learning successfully? We will investigate this question in the remainder of this chap-
ter.

In this chapter, we implement a limited-memory BFGS (L-BFGS) optimization
method for deep reinforcement learning framework. Our deep L-BFGS Q-learning
method is designed to be efficient for parallel computation using GPUs. We investi-
gate our algorithm using a subset of the ATARI 2600 games, assessing its ability to
learn robust representations of the state-action value function, as well as its computa-
tion and memory efficiency. We also analyze the convergence properties of Q-learning
using a deep neural network employing L-BFGS optimization.

6.2 Optimization Problems in RL
In an RL problem, the agent should implement a policy, π, from states, S, to possible
actions, A, to maximize its expected return from the environment (Sutton and Barto,
2017). At each cycle of interaction, the agent receives a state, s, from the environment,
takes an action, a, and one time step later, the environment sends a reward, r ∈ R,
and an updated state, s′. Each cycle of interaction, e = (s, a, r, s′) is called a transition
experience (or a trajectory). The goal is to find an optimal policy that maximizes
the expected value of the return, i.e. the cumulative sum of future rewards, Gt =∑T
t′=t γ

t′−trt′+1, where γ ∈ [0, 1] is a discount factor, and T as a final step. It is often
useful to define a parametrized value function Q(s, a;w) to estimate the expected
value of the return. Q-learning is a Temporal Difference (model-free RL) algorithm
that attempts to find the optimal value function by minimizing the loss function,
L(w), which is defined over a recent experience memory D:

min
w∈Rn

L(w) , 1
2Ee∼D

[(
Y −Q(s, a;w)

)2
]
, (6.2)

where Y = r + maxa′ Q(s′, a′;w) is the target value for the expected return based on
the Bellman’s optimality equations (Sutton and Barto, 1998).

In practice, instead of minimization of the expected risk in (6.2) we can define an
optimization problem for the empirical risk as follows

min
w∈Rn

L(w) , 1
2|D|

∑
e∈D

[(
Y −Q(s, a;w)

)2
]
. (6.3)

The most common approach for solving the empirical risk minimization problem (6.3)
in literature involves using a variant of the stochastic gradient decent (SGD) method
(6.3). At each optimization step, k, a small set of experiences, Jk, are randomly
sampled from the experience replay memory, D. This sample is used to compute an
stochastic gradient of the objective function, ∇L(w)Jk , as an approximation for the
true gradient, ∇L(w),

∇L(w)(Jk) ,
−1
|Jk|

∑
e∈Jk

[(
Y −Q(s, a;w)

)
∇Q

]
. (6.4)

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 103

The stochastic gradient then can be used to update the iterate wk to wk+1

wk+1 = wk − αk∇L(wk)(Jk), (6.5)

where αk is the learning rate (step size).

6.3 Line-search L-BFGS Optimization
In this section, we briefly introduce a quasi-Newton optimization method based on
the line-search strategy, as an alternative for SGD methods. Then we introduce the
limited-memory BFGS method.

6.3.1 Line Search Method
Each iteration of a line search method computes a search direction, pk, and then
decides how far to move along that direction. The iteration is given by

wk+1 = wk + αkpk, (6.6)

where αk is called the step size. The search direction pk is obtained by minimizing a
quadratic model of the objective function defined by

pk = min
p∈Rn

qk(p) , gTk p+ 1
2p

TBkp, (6.7)

where gk = ∇L(wk) ∈ Rn is the gradient of the objective function at wk, and Bk is
an approximation to the Hessian matrix ∇2L(wk) ∈ Rn×n. If Bk is a positive definite
matrix, the minimizer of the quadratic function can be calculated directly as

pk = −B−1
k gk. (6.8)

The step size, αk, is chosen to satisfy the Wolfe conditions (Nocedal and Wright,
2006) given by

L(wk + αkpk) ≤ L(wk) + c1αk∇LTk pk, (6.9a)
∇L(wk + αkpk)Tpk ≥ c2∇L(wk)Tpk, (6.9b)

with 0 < c1 < c2 < 1. The Wolfe conditions consist of a sufficient decrease condition
in (6.9a) and a curvature condition in (6.9).

6.3.2 Quasi-Newton Optimization Methods
Methods that use the Hessian for Bk, Bk = ∇2L(wk), in the quadratic model in
(6.7) typically exhibit quadratic rates of convergence. However, in large-scale prob-
lems (where n and N are both large), computing the true Hessian explicitly is not

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 104

practical. In this case, quasi-Newton methods are viable alternatives because they
exhibit super-linear convergence rates while maintaining memory and computational
efficiency. Instead of the true Hessian, quasi-Newton methods use an approximation
Bk, which is updated after each step to take account of the additional knowledge
gained during the step.

Quasi-Newton methods, like gradient descent methods, require only the compu-
tation of first-derivative information. They can perform efficient optimization by
constructing a quadratic model of the objective function, using the changes in con-
secutive gradients as an estimate of the Hessian. The quasi-Newton matrices, {Bk},
are required to satisfy the secant equation

Bk+1(wk+1 − wk) ≈ ∇L(wk+1)−∇L(wk). (6.10)

Typically, there are additional conditions imposed on Bk+1, such as symmetry (since
the exact Hessian is symmetric), and a requirement that the update to obtain Bk+1
from Bk is low rank, meaning that the Hessian approximations cannot change too
much from one iteration to the next. Quasi-Newton methods vary in how this update
is defined.

6.3.3 The BFGS Quasi-Newton Update
Perhaps the most well-known among all of the quasi-Newton methods is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update (Liu and Nocedal, 1989; Nocedal and Wright,
2006), given by

Bk+1 = Bk −
1

sTkBksk
BksksTkBk + 1

yTk sk
ykyTk , (6.11)

where sk = wk+1 − wk and yk = ∇L(wk+1) −∇L(wk). The matrices are defined re-
cursively with the initial matrix, B0 = λk+1I, where the scalar λk+1 > 0. The BFGS
method generates positive-definite approximations whenever the initial approxima-
tion B0 is positive definite and sTk yk > 0.

6.3.4 Limited-Memory BFGS
In practice, only the m most-recently computed pairs {(sk,yk)} are stored, where
m � n, typically m ≤ 100 for very large problems. This approach is often referred
to as limited-memory BFGS (L-BFGS). Since we have to compute pk = −B−1

k gk at
each iteration, we make use of the following recursive formula for Hk = B−1

k :

Hk+1 =
(
I − yksTk

yTk sk

)
Hk

(
I − skyTk

yksTk

)
+ ykyTk

yksTk
, (6.12)

where H0 = γk+1I. A common value for γk+1 > 0 is yTk sk/yTk yk (Nocedal and Wright,
2006; Rafati and Marcia, 2018). The L-BFGS two-loop recursion algorithm, given in
Algorithm 14, can compute pk = −Hkgk in 4mn operations (Nocedal and Wright,
2006).

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 105

Algorithm 14 L-BFGS two-loop recursion.
q ← gk = ∇L(wk)
for i = k − 1, . . . , k −m do

αi = sT
i q

yT
i si

q ← q − αiyi
end for
r← H0q
for i = k − 1, . . . , k −m do

β = yT
i r

yT
i si

r← r + si(αi − β)
end for
return −r = −Hkgk

6.4 Deep L-BFGS Q Learning Method
In this section, we propose a novel algorithm for the optimization problem in deep Q-
Learning framework, based on the limited-memory BFGS method using a line search
strategy. This algorithm is designed to be efficient for parallel computations on GPU.
Also the experience memory D is emptied after each gradient computation, hence the
algorithm needs much less RAM memory.

Inspired by Berahas et al. (2016), we use the overlap between the consecutive
multi-batch samples Ok = Jk ∩ Jk+1 to compute yk as

yk = ∇L(wk+1)(Ok) −∇L(wk)(Ok). (6.13)

The use of overlap to compute yk has been shown to result in more robust con-
vergence in L-BFGS since L-BFGS uses gradient differences to update the Hessian
approximations (see Berahas et al. (2016) and Erway et al. (2018)).

At each iteration of optimization we collect experiences in D up to batch size b
and use the entire experience memory D as the overlap of consecutive samples Ok.
For computing the gradient gk = ∇L(wk), we use the kth sample, Jk = Ok−1 ∪Ok

∇L(wk)(Jk) = 1
2(∇L(wk)(Ok−1) +∇L(wk)(Ok)). (6.14)

Since ∇L(wk)(Ok−1) is already computed to obtain yk−1 in the previous iteration, we
only need to compute ∇L(Ok)(wk), given by

∇L(wk)(Ok) = −1
|D|

∑
e∈D

[(
Y −Q(s, a;wk)

)
∇Q

]
. (6.15)

Note that in order to obtain yk, we only need to compute∇L(wk+1)(Ok) since∇L(wk)(Ok)

is already computed when we computed the gradient in (6.14).
The line search multi-batch L-BFGS optimization algorithm for deep Q-Leaning

is provided in Algorithm 15.

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 106

Algorithm 15 Line search Multi-batch L-BFGS Optimization for Deep Q Learning.
Inputs: batch size b, L-BFGS memory m, exploration rate ε
Initialize experience memory D ← ∅ with capacity b
Initialize w0, i.e. parameters of Q(., .;w) randomly
Initialize optimization iteration k ← 0
for episode = 1, . . . ,M do

Initialize state s ∈ S
repeat for each step t = 1, . . . , T

compute Q(s, a;wk)
a←EPS-GREEDY(Q(s, a;wk), ε)
Take action a
Observe next state s′ and external reward r
Store transition experience e = {s, a, r, s′} to D
s← s′

until s is terminal or intrinsic task is done
if |D| == b then

Ok ← D
Update wk by performing optimization step
D ← ∅

end if
end for

==
Multi-batch line search L-BFGS Optimization step:

Compute gradient g(Ok)
k

Compute gradient g(Jk)
k ← 1

2g
(Ok)
k + 1

2g
(Ok−1)
k

Compute pk = −B−1
k g

(Jk)
k using Algorithm 14

Compute αk by satisfying the Wolfe Conditions (6.9)
Update iterate wk+1 = wk + αkpk
sk ← wk+1 − wk
Compute g(Ok)

k+1 = ∇L(wk+1)(Ok)

yk ← g
(Ok)
k+1 − g

(Ok)
k

Store sk to Sk and yk to Yk and remove oldest pairs
k ← k + 1

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 107

6.5 Convergence Analysis
In this section, we present a convergence analysis for our deep Q-learning with multi-
batch line-search L-BFGS optimization method (Algorithm 15). We also provide
an analysis for optimality of the state action value function. We then provide a
comparison between the computation time of our deep L-BFGS Q-learning method
(Algorithm 15) and that of DeepMind’s Deep Q-learning algorithm (Mnih et al.,
2015), which uses a variant of the SGD method.

6.5.1 Convergence of empirical risk
To analyze the convergence properties of empirical risk function L(w) in (6.3) we
assume that

L(w) is strongly convex, and twice differentiable. (6.16a)
∀w, ∃λ,Λ > 0 such that λI � ∇2L(w)L � ΛI, i.e. Hessian is bounded. (6.16b)
∀w, ∃η > 0 such that ‖∇L(w)‖2 ≤ η2, i.e. Gradient does not explode. (6.16c)

Lemma 6.1. ∃λ′,Λ′ > 0 such that λ′I � Hk � Λ′I.

Proof. Due to the assumptions (6.16a) and (6.16b), the eigenvalues of the positive-
definite matrix Hk are also bounded (Byrd et al., 2016; Berahas et al., 2016).

Lemma 6.2. Let w∗ be a minimizer of L. Then, for all w, we have 2λ(L(w) −
L(w∗) ≤ ‖∇L(w)‖2.

Proof. For any convex function, L, and for any two points, w and w∗, one can show
that (Nesterov, 2013):

L(w) ≤ L(w∗) +∇L(w∗)T (w − w∗)

+ 1
2λ‖∇L(w)−∇L(w∗)‖2.

(6.17)

Since w∗ is a minimizer of L then ∇L(w∗) = 0 in (6.17) and we have the proof.

Theorem 6.1. Let wk be iterates generated by Algorithm 15, and let’s assume that
the step length, αk, is fixed. The upper bound for the empirical risk offset from the
true minimum value is

L(wk)− L(w∗) ≤ (1− 2αλλ′)k[L(w0)− L(w∗)]

+[1− (1− 2αλλ′)k]α
2Λ′2Λη2

4λ′λ .
(6.18)

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 108

Proof. By using Taylor expansion on

L(wk+1) = L(wk − αkH∇L(wk))

around wk we can have

L(wk+1) ≤ L(wk)− αk∇L(wk)THk∇L(wk)

+Λ
2 ‖αk∇L(wk)THk∇L(wk)‖2.

(6.19)

By applying assumptions (6.16) and Lemma 6.1 and 6.2 to the above inequality, we
have

L(wk+1) ≤ L(wk)

− 2αkλ′λ[L(wk)− L(w∗)] + α2
kΛ′2Λη2

4λ′λ
(6.20)

By rearranging terms and using recursion expression and recursion over k we have the
proof. For a more detailed proof see Byrd et al. (2016) and Berahas et al. (2016).

If the step size is bounded, α ∈ (0, 1/2λλ′), we can conclude that the first term of
the bound given in (6.18) is decaying linearly to zero when k →∞ and the constant
residual term, α2Λ′2Λη2

4λ′λ , is the neighborhood of convergence.

6.5.2 Value Optimality
The Q-learning method has been proved to converge to the optimal value function if
the step sizes satisfies ∑k αk = ∞ and ∑k α

2
k < ∞ (Jaakkola et al., 1994). Now, we

want to prove that Q-learning using the L-BFGS update also theoretically converges
to the optimal value function under one additional condition on the step length, αk.

Theorem 6.2. Let Q∗ be the optimal state-action value function and Qk be the Q-
function with parameters wk. Furthermore, assume that the gradient of Q is bounded,
‖∇Q‖2 ≤ η′′2, and the Hessian of Q functions satisfy λ′′ � ∇2Q � Λ′′. We have

‖Qk+1 −Q∗‖∞ <
k∏
j=0

[
1− αjη′′2λ+ αjη

′′2Λ′2Λ′′
2

]k
‖Q0 −Q∗‖∞.

(6.21)

If step size αk satisfies
∣∣∣1− αkη′′2λ+ αkηη

′Λ′2Λ′′
2

∣∣∣ < 1, ∀k, (6.22)

Q(., .;wk) ultimately will converge to Q∗, when k →∞.

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 109

Proof. First we derive the effect of the parameter update from wk to

wk+1 = wk − αkHk∇L(wk)

on the optimality neighbor.

‖Qk+1 −Q∗‖∞ , max
s,a

∣∣∣Q(s, a, wk+1)−Q∗(s, a)
∣∣∣ (6.23)

We approximate the gradient using only one experience (s, a, r, s′),

∇L(wk) ≈
(
Q(s, a;wk)−Q∗(s, a;wk)

)
∇Qk(s, a;wk), (6.24)

Using Taylor’s expansion to approximate Q(s, a, wk+1) results in

Q(s, a;wk+1) = Q(s, a;wk − αkHk∇L(wk))

= Q(s, a;wk)− αk∇LTkHk∇Qk + α2
k

2 ∇L
T
kHk∇2Q(ξk)Hk∇LTk

= Qk − αk(Qk −Q∗)∇QT
kHk∇Qk + α2

k

2 (Qk −Q∗)∇QT
kHk∇2Q(ξk)Hk∇LTk ,

(6.25)

where wk < ξk < wk+1, Qk := Q(s, a;wk), ∇Qk := ∇Q(s, a;wk), and∇Lk := ∇L(wk).
We can use the above expression to compute ‖Qk+1 −Q∗‖∞

‖Qk+1 −Q∗‖∞ =

max
s,a

∣∣∣∣(Qk −Q∗)
[
1− αk∇QT

kHk∇Qk + α2
k

2 ∇Q
T
kHk∇2Q(ξk)Hk∇Lk

]∣∣∣∣
(s,a)

.
(6.26)

If αk satisfies ∣∣∣∣1− αk∇QT
kHk∇Qk + α2

k

2 ∇Q
T
kHk∇2QkHk∇Lk

∣∣∣∣ < 1, (6.27)

then

‖Qk+1 −Q∗‖∞ < ‖Qk −Q∗‖∞. (6.28)

Therefore, Qk converges to Q∗ when k → ∞. Considering our assumptions on the
bounds of the eigenvalues of ∇2Qk and Hk, we can derive (6.22) from (6.27). Recur-
sion on (6.26) from k = 0 to k + 1 results in (6.21).

6.5.3 Computation time
Let us compare the cost of deep L-BFGS Q-learning in Algorithm 15 with DQN
algorithm in (Mnih et al., 2015) that uses a variant of SGD. Assume that the cost
of computing gradient is O(bn) where b is the batch size. The real cost is probably
less than this due to the parallel computation on GPUs. Let’s assume that we run

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 110

both algorithm for L steps. We update the weights every b steps. Hence there is L/b
maximum updates in our algorithm. The SGD batch size in Mnih et al. (2015), bs,
is smaller than b, but the frequency of the update is high, f � b. Each iteration of
the L-BFGS algorithm update introduces the cost of computing the gradient, g(Ok)

k ,
which is O(bn), the cost of computing the search step, pk = −Hkg

(Ok)
k , using L-BFGS

two-loop recursion (Algorithm 14), which is O(4mn), and the cost of satisfying the
Wolfe conditions (6.9) to find a step size that usually satisfies for α = 1 and, in some
steps, requires recomputing the gradient z times. Therefore we have

Cost of Algorithm 14
Cost of DQN (Mnih et al., 2015) = (L/b)(zbn+ 4mn)

(L/f)(bsn)

= fz

bs
+ 4fm

bbs
.

(6.29)

In our algorithm, we use a quite large batch size to compute less noisy gradients.
With b = 2048, bs = 32, f = 4, z = 5, m = 20, the runtime cost ratio will be
around 0.63 < 1. Although the per-iteration cost of the the SGD algorithm is lower
than L-BFGS, the total training time of our algorithm is less than DQN (Mnih et al.,
2015) for the same number of RL steps due to the need for less frequent updates in
the L-BFGS method.

6.6 Experiments on ATARI 2600 Games
We performed experiments using our approach (Algorithm 15) on six ATARI 2600
games – Beam-Rider, Breakout, Enduro, Q*bert, Seaquest, and Space Invaders. We
used OpenAI’s gym ATARI environments (Brockman et al., 2016) which are wrap-
pers on the Arcade Learning Environment emulator (Bellemare et al., 2013). These
games have been used by other researchers investigating different learning methods
(Bellemare et al., 2012, 2013; Hausknecht et al., 2014; Mnih et al., 2015; Schulman
et al., 2015), and, hence, they serve as benchmark environments for the evaluation of
deep reinforcement learning algorithms.

We used DeepMind’s Deep Q-Network (DQN) architecture, described in Mnih
et al. (2015), as a function approximator for Q(s, a;w). The same architecture was
used to train agents to play the different ATARI games. The raw Atari frames,
which are 210 × 160 pixel images with a 128 color palette, were preprocessed by
first converting their RGB representation to gray-scale and then down-sampling the
images to be 110× 84 pixels. The final input representation is obtained by cropping
an 84×84 region of the image that roughly captures the playing area. The stack of the
last 4 consecutive frames was used to produce the input, of size (4× 84× 84), to the
Q-function. The first hidden layer of the network consisted of 32 convolutional filters
of size 8×8 with stride 4, followed by a Rectified Linear Unit (ReLU) for nonlinearity.
The second hidden layer consisted of 64 convolutional filters of size 4×4 with stride 2,
followed by a ReLU function. The third layer consisted of 512 fully-connected linear

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 111

units, followed by ReLU. The output layer was a fully-connected linear layer with
an output, Q(s, ai, w), for each valid joystick action, ai ∈ A. The number of valid
joysticks actions, i.e. |A|, was 9 for Beam-Rider, 4 for Breakout, 9 for Enduro, 6 for
Q*Bert, 18 for Seaquest, and 6 for Space-Invaders.

We only used 2 million (2000 × 1024) Q-learning training steps for training the
network on each game (instead of 50 million steps that was used originally in Mnih
et al. (2015)). The training was stopped when the norm of the gradient, ‖gk‖, was
less than a threshold. We used ε-greedy for an exploration strategy, and, similar to
Mnih et al. (2015), the exploration rate, ε, was annealed linearly from 1 to 0.1.

Every 10,000 steps, the performance of the learning algorithm was tested by freez-
ing the Q-network’s parameters. During the test time, we used ε = 0.05. The greedy
action, maxaQ(s, a;w), was chosen by the Q-network 95% of the times and there was
5% randomness, similar to the DeepMind implementation in Mnih et al. (2015).

Inspired by Mnih et al. (2015), we also used separate networks to compute the
target values, Y = r+ γmaxa′ Q(s′, a′, wk−1), which was essentially the network with
parameters in previous iterate. After each iteration of the multi-batch line search
L-BFGS, wk was updated to wk+1, and the target network’s parameter wk−1 was
updated to wk.

Our optimization method was different than DeepMind’s RMSProp method, used
in Mnih et al. (2015) (which is a variant of SGD). We used a stochastic line search
L-BFGS method as the optimization method (Algorithm 15). There are a few im-
portant differences between our implementation of deep reinforcement learning and
DeepMind’s DQN algorithm.

We used a quite large batch size, b, in comparison to Mnih et al. (2015). We
experimented with different batch sizes b ∈ {512, 1024, 2048, 4096, 8192}. The
experience memory, D, had a capacity of b also. We used one NVIDIA Tesla K40
GPU with 12GB GDDR5 RAM. The entire experience memory, D, could fit in the
GPU RAM with a batch size of b ≤ 8192.

After every b steps of interaction with the environment, the optimization step in
Algorithm 15 was ran. We used the entire experience memory, D, for the overlap,
Ok, between two consecutive samples, Jk and Jk+1, to compute the gradient in (6.15)
as well as yk in (6.13). Although the DQN algorithm used a smaller batch size of 32,
the frequency of optimization steps was high (every 4 steps). We hypothesize that
using the smaller batch size made the computation of the gradient too noisy, and,
also, this approach doesn’t save significant computational time, since the overhead
of data transfer between GPU and CPU is more costly than the computation of the
gradient over a bigger batch size, due to the power of parallelism in a GPU. Once
the overlap gradient, g(Ok)

k , was computed, we computed the gradient, g(Jk)
k , for the

current sample, Jk, in (6.14) by memorizing and using the gradient information from
the previous optimization step. Then, the L-BFGS two loop-recursion in Algorithm
14 was used to compute the search direction pk = −Hkg

(Jk)
k .

After finding the quasi-Newton decent direction, pk, the Wolfe Condition (6.9) was
applied to compute the step size, αk ∈ [0.1, 1], by satisfying the sufficient decrease

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 112

and the curvature conditions (Wolfe, 1969; Nocedal and Wright, 2006). During the
optimization steps, either the step size of αk = 1 satisfied the Wolfe conditions,
or the line search algorithm iteratively used smaller αk until it satisfied the Wolfe
conditions or reached a lower bound of 0.1. The original DQN algorithm used a small
fixed learning rate of 0.00025 to avoid the execrable drawback of the noisy stochastic
gradient decent step, which makes the learning process very slow.

The vectors sk = wk+1 −wk and yk = g
(Ok)
k+1 − g

(Ok)
k were only added to the recent

collections Sk and Yk if sTk yk > 0 and not close to zero. We applied this condition
to cautiously preserve the positive definiteness of the L-BFGS matrices Bk. Only the
m recent {(si,yi)} pairs were stored into Sk and Yk (|Sk| = m and |Yk| = m) and
the older pairs were removed from the collections. We experimented with different
L-BFGS memory sizes m ∈ {20, 40, 80}.

All code is implemented in the Python language using Pytorch, NumPy, and SciPy
libraries, and it is available at http://rafati.net/quasi-newton-rl.

6.7 Results and Discussions
The average of the maximum game scores is reported in Figure 6.1 (a). The error bar
in Figure 6.1 (a) is the standard deviation for the simulations with different batch size,
b ∈ {512, 1024, 2048, 4096}, and different L-BFGS memory size, m ∈ {20, 40, 80}, for
each ATARI game (total of 12 simulations per each task). All simulations regardless
of the batch size, b, and the memory size, m, exhibited robust learning. The average
training time for each task, along with the empirical loss values, L(wk), is shown in
Figure 6.1 (b).

The Coefficient of Variation (C.V.) for the test scores was about 10% for each
ATARI task. (The coefficient of variation is defined as the standard deviation divided
by the mean). We did not find a correlation between the test scores and the different
batch sizes, b, or the different L-BFGS memory sizes, m. The coefficient of variation
for the training times was 50% for each ATARI task. Hence, we did not find a strong
correlation between the training time and the different batch sizes, b, or the different
L-BFGS memory sizes, m. In most of the simulations, the loss for the training time,
as shown in Figure 6.1 (b), was very small.

The test scores and the training loss, Lk, for the six ATARI 2600 environments
is shown in Figure 6.2 using the batch size of b = 2048 and L-BFGS memory size
m = 40.

The results of the Deep L-BFGS Q-Learning algorithm is summarized in Table
6.1, which also includes an expert human performance and some recent model-free
methods: the Sarsa algorithm (Bellemare et al., 2013), the contingency aware method
from (Bellemare et al., 2012), deep Q-learning (Mnih et al., 2013), and two methods
based on policy optimization called Trust Region Policy Optimization (TRPO vine
and TRPO single path) (Schulman et al., 2015) and the Q-learning with the SGD
method. Our method outperformed most other methods in the Space Invaders game.
Our deep L-BFGS Q-learning method consistently achieved reasonable scores in the

http://rafati.net/quasi-newton-rl

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 113

(a) (b)

BeamRider Breakout Enduro Qbert Seaquest SpaceInvaders

Tasks

0

500

1000

G
am

e
S

co
re

s

BeamRider Breakout Enduro Qbert Seaquest SpaceInvaders

Tasks

2

4

6

T
ra

in
ti

m
e

(h
ou

rs
)

Figure 6.1: (a) Test scores (b) Total training time for ATARI games.

(a) (b) (c)

0 500000 1000000 1500000 2000000
Episode Steps

0

500

1000

G
am

e
S

co
re

s

Test scores – BeamRider

0 500000 1000000 1500000 2000000
Episode Steps

5

10
G

am
e

S
co

re
s

Test scores – Breakout

0 500000 1000000 1500000 2000000
Episode Steps

0

10

20

30

40

G
am

e
S

co
re

s

Test scores – Enduro

(d) (e) (f)

0 500000 1000000 1500000
Episode Steps

0

500

G
am

e
S

co
re

s

Test scores – Qbert

0 500000 1000000
Episode Steps

0

200

400

G
am

e
S

co
re

s

Test scores – Seaquest

0 500000 1000000 1500000 2000000
Episode Steps

0

500

1000

G
am

e
S

co
re

s

Test scores – SpaceInvaders

(g) (h) (i)

0 500000 1000000 1500000 2000000
Episode Steps

0.025

0.050

0.075

0.100

T
ra

in
L

os
s

Train loss - BeamRider

0 500000 1000000 1500000 2000000
Episode Steps

0.041

0.042

T
ra

in
L

os
s

Train loss - Breakout

0 500000 1000000 1500000 2000000
Episode Steps

0.001

0.002

T
ra

in
L

os
s

Train loss - Enduro

(j) (k) (l)

0 500000 1000000 1500000
Episode Steps

0.2

0.4

T
ra

in
L

os
s

Train loss - Qbert

0 500000 1000000
Episode Steps

0.0

0.2

0.4

T
ra

in
L

os
s

Train loss - Seaquest

0 500000 1000000 1500000 2000000
Episode Steps

0.034

0.036

0.038

T
ra

in
L

os
s

Train loss - SpaceInvaders

Figure 6.2: (a) – (f) Test scores and (g) – (l) training loss for six ATARI games —
Beam Rider, Breakout, Enduro, Q*bert, Seaquest, and Space Invaders. The results
are form simulations with batch size b = 2048 and the L-BFGS memory size m = 40.

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 114

other games. Our simulations were only trained on about 2 million Q-learning steps
(much less than other methods). DeepMind DQN method outperformed our algo-
rithm on most of the games, except on the Space-Invaders game.

Table 6.1: Best Game Scores for ATARI 2600 Games with different learning methods.
Beam Rider (BR), Breakout (BO), Enduro (EO), Q*bert (Q*B), Seaquest (SQ), and
Space Invaders (SI)

Method BR BO EO Q*B SQ SI

Random 354 1.2 0 157 110 179

Human 7456 31 368 18900 28010 3690

Sarsa (Bellemare et al., 2013) 996 5.2 129 614 665 271

Contingency (Bellemare et al., 2012) 1743 6 159 960 723 268

HNeat Pixel (Hausknecht et al., 2014) 1332 4 91 1325 800 1145

DQN (Mnih et al., 2013) 4092 168 470 1952 1705 581

TRPO, Single path (Schulman et al., 2015) 1425 10 534 1973 1908 568

TRPO, Vine (Schulman et al., 2015) 859 34 431 7732 7788 450

SGD (α = 0.01) 804 13 2 1325 420 735

SGD (α = 0.00001) 1092 14 1 1300 380 975

Our method 1380 18 49 1525 600 955

The training time for our simulations were on the order of 3 hours (4 hours for
Beam-Rider, 2 hours for Breakout, 4 hours for Enduro, 2 hours for Q*bert, 1 hour
for Seaquest, and 2 hours for Space-Invaders). Our method outperformed all other
methods on the computational time. For example, 500 iterations of the TRPO algo-
rithm took about 30 hours (Schulman et al., 2015). We also compared our method
with the SGD method. For each task, we trained the Q-learning algorithm using the
SGD optimization method for two million Q-learning training steps. We examined
two different learning rates: a relatively large learning rate, α = 0.01, and a very
small learning rate, α = 0.00001. The other parameters were adopted from Mnih
et al. (2015). The game scores with our method outperformed the SGD method in
most of the simulations (11 out of 12 times) (see Table 6.1). Although the compu-
tation time per iteration of the SGD update is lower than our method, but the total
training time of the SGD method is much slower than our method due to the higher
frequency of the parameter updates in the SGD method as opposed to our L-BFGS
line-search method. See Table 6.2 for the results of the training time for each task,
using different optimization methods, L-BFGS and SGD.

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 115

Table 6.2: Average training time for ATARI 2600 games with different learning meth-
ods (in hours). Beam Rider (BR), Breakout (BO), Enduro (EO), Q*bert (Q*B),
Seaquest (SQ), and Space Invaders (SI)

Method BR BO EO Q*B SQ SI

SGD (α = 0.01) 4 2 8 8 8 1

SGD (α = 0.00001) 7 11 7 6 8 6

Our method 4 2 4 2 1 1

6.8 Future Work
In future work, we will consider optimization methods based on trust-regions. As we
showed in Chapter 5, trust-region methods require choosing some hyperparameters,
like proper initial trust region radius, but they might converge faster than line search
since they do not require satisfying the curvature condition, and the sufficient decrease
condition. Additionally, trust-region algorithms can shrink or expand the trust-region
radius based on the quality of the search step. Also, since the true Hessian is indefinite,
using indefinite quasi-Newton matrices, like Symmetric Rank 1 (SR1), or Full Broyden
Class (FBC) within trust-region methods might lead to better convergence properties.
We will study these methods as future work.

We also intend to study Hessian-free optimization methods for model-free RL
within conjugate gradient framework. Conjugate gradient is a method for minimizing
the quadratic model of the objective function and solving large linear systems of
equations. Newton’s method is an algorithm for solving nonlinear equations, and
can be used as a second-order optimization method within the conjugate gradient
framework. In Newton’s method, we need to compute the Hessian matrix, H =
∇2L(w), to find the next iterate, wk+1 = wk − H−1

k ∇L(wk). Although finding the
Hessian and its inverse in large-scale problems is not possible, we can compute the
Hessian times any vector with just two computations of the gradient

Hp = ∇L(w + εp)−∇L(w)
ε

+O(ε), (6.30)

where ε is small. Also, for the specific case of neural networks, we can compute Hp
directly using an algorithm similar to normal backpropagation (Pearlmutter, 1994).
Hence, we can employ conjugate gradient methods to find the next iteration wk+1
(Le et al., 2011a). See Nocedal and Wright (2006) for details on conjugate gradi-
ent methods. The Newton’s methods have quadratic rates of convergence, which is
theoretically better than the quasi-Newton methods, with superlinear convergence
rates.

Chapter 6. Quasi-Newton Optimization in Deep Reinforcement Learning 116

6.9 Conclusions
We proposed and implemented a novel optimization method based on line search
limited-memory BFGS for the deep reinforcement learning framework. We tested
our method on six classic ATARI 2600 games. The L-BFGS method attempts to
approximate the Hessian matrix by constructing positive definite matrices with low-
rank updates. Due to the nonconvex and nonlinear loss functions arising in deep
reinforcement learning, our numerical experiments show that using the curvature
information in computing the search direction leads to a more robust convergence
when compared to the SGD results. Our proposed deep L-BFGS Q-Learning method
is designed to be efficient for parallel computations on GPUs. Our method is much
faster than the existing methods in the literature, and it is memory efficient since it
does not need to store a large experience replay memory.

Chapter 7

Concluding Remarks

Reinforcement Learning (RL) algorithms allow artificial agents to improve their selec-
tion of actions so as to increase rewarding experiences in their environments. These
algorithms typically learn a mapping from the agent’s current sensed state to a se-
lected action. In the model-free RL algorithms, like Temporal Difference (TD) Learn-
ing, the agent learns the value of taking an action at any state, without learning a
model of the environment (i.e. the state-transition probabilities and the reward func-
tion). TD algorithms, such as SARSA, and Q-learning have been very successful on
a broad range of control tasks. But learning can become intractably slow as the state
space of the environment grows. This has motivated methods that learn internal
representations of the agent’s state, effectively reducing the size of the state space
and restructuring state representations in order to support generalization to novel
situations.

In this dissertation, I have investigated biologically inspired techniques for learning
useful representations for model-free reinforcement learning, as well as numerical opti-
mization methods for improving learning. There are three parts to this investigation:
(1) learning sparse representations in reinforcement learning, (2) learning representa-
tions in model-free hierarchical reinforcement learning, and (3) optimization methods
in reinforcement learning. These three contributions provide a foundation for scal-
ing reinforcement learning to more complex control problems through the learning of
improved internal representations.

Many machine learning tasks (including RL) require solving empirical risk mini-
mization problems which are highly nonconvex and nonlinear. In the context of large-
scale machine learning, and large-scale nonconvex optimization, I have contributed to
the deep learning literature by implementing novel trust-region quasi-Newton meth-
ods. The proposed methods do not require hyperparamter tuning, and they have
robust convergence with preferred generalization characteristics.

117

Chapter 7. Concluding Remarks 118

7.1 Summary of Contributions

Learning Sparse Representations in RL
Using a function approximator to learn the value function (an estimate of the expected
future reward from a given environmental state) has the benefit of supporting gener-
alization across similar states, but this approach can produce a form of catastrophic
interference that hinders learning, mostly arising in cases in which similar states have
widely different values. Computational neuroscience models have shown that a com-
bination of feedforward and feedback inhibition in neural circuits naturally produces
sparse conjunctive codes over a collection of excitatory neurons (Noelle, 2008).

I have implemented efficient algorithms that incorporate a kind of lateral inhibi-
tion into artificial neural network layers, driving these machine learning systems to
produce sparse conjunctive internal representations. I have shown how such learned
representations lead to successful learning of control tasks that had previously been
seen as problematic. I have produced computational simulation results as preliminary
evidence that learning such sparse representations of the state of an RL agent can
help compensate for weaknesses of artificial neural networks in TD Learning. See
Chapter 3 or our published papers, Rafati and Noelle (2015, 2017), for more details.

Learning Representations in Model-Free HRL
Hierarchical Reinforcement Learning (HRL) methods attempt to address the scal-
ability issues of RL by learning policies at multiple levels of temporal abstraction.
Abstraction can be had by subgoal discovery, in concert with the learning of corre-
sponding skill policies to achieve those subgoals. Many approaches to subgoal discov-
ery in HRL depend on the analysis of a model of the environment, but the need to
learn such a model introduces its own problems of scale.

I have implemented a novel model-free method for subgoal discovery using incre-
mental unsupervised learning over a small memory of the most recent experiences
of the agent. When combined with an intrinsic motivation learning mechanism, and
temporal abstraction, this method learns subgoals and skills together, based on expe-
riences in the environment. Thus, I have produced an original approach to HRL that
does not require the acquisition of a model of the environment, suitable for large-scale
applications. See Chapter 4, or our published papers, Rafati and Noelle (2019a,b,c,d),
for more details.

In search of further biological inspiration, I have attempted to find correlates of
the components of the unified model-free HRL framework in regions of the human
brain. I have found associations to the prefrontal cortex, motor areas, the basal
ganglia, the dopamine system, and the hippocampus. I hope that this work will lead
to new ideas about the functions of major parts of the brain. In future work, I hope
to combine the model-free HRL framework with model-based methods to incorporate
planning into the learning of the representations. I hypothesize that this unified HRL

Chapter 7. Concluding Remarks 119

framework will be able to solve much more complex tasks. Finally, I am interested in
understanding the connections between the components of the HRL framework with
Heideggerian phenomenology (Yoshimi, 2017).

Quasi-Newton Optimization in Large-scale Machine Learning
Intelligent processing of complex signals, such as in image recognition and deep re-
inforcement learning is often performed by a parameterized hierarchy of nonlinear
layers, as in deep neural networks. Deep learning and Deep RL algorithms often re-
quire solving a highly nonlinear and nonconvex unconstrained optimization problem.

Methods for solving such optimization problems in deep learning and deep RL
have generally been restricted to the class of first-order algorithms, like stochastic
gradient descent (SGD). The major drawback of the SGD methods is that they have
the undesirable effect of not escaping saddle points in the objective function. Further-
more, these methods typically require exhaustive trial and error to fine tune many
learning parameters. Since the stochastic gradient is noisy, the learning rate (step
size) is generally chosen to be very small, causing each experience to have only a small
effect. Hence, in order to succeed at optimization, SGD methods must repeatedly re-
play a large number of recorded experiences. This is computationally expensive, and
it requires a large amount of memory.

Using second derivative information can result in improved convergence prop-
erties, but computing the Hessian matrix for large-scale problems is not practical.
Quasi-Newton methods require only first-order gradient information. By incorporat-
ing the curvature information into the search direction using a low rank approxima-
tion of the Hessian, quasi-Newton methods can result in a superlinear convergence,
which makes them attractive alternatives to SGD methods. The limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) approach is one of the most popular
quasi-Newton methods, relying on the construction of positive definite Hessian ap-
proximations.

Quasi-Newton methods are another first-order optimization methods which can
result in a superlinear convergence. They can construct a low rank approximation of
the Hessian and incorporate the curvature information into the search direction, using
only first-order gradients. The limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) approach is one of the most popular quasi-Newton methods, relying on
the construction of positive definite Hessian approximations.

I have implemented efficient algorithms based on L-BFGS optimization method
suitable for deep learning an deep RL applications to improve the quality of repre-
sentation learning, as well as convergence properties.

Trust-region L-BFGS Optimization in Deep Learning
There are two strategies for quasi-Newton optimizations, line-search and the trust-
region method. Both methods seek to minimize a quadratic model of the objective
function around the current iterate. The line-search strategy finds a descent direction

Chapter 7. Concluding Remarks 120

and then imposes a sufficient decrease and curvature condition to find the proper
step length along the search direction. The trust-region method requires solving
a constrained optimization subproblem, which is more complicated, but there are
efficient methods to find a global optimizer of the quadratic model in the trust-region.

I have implemented L-BFGS optimization under both trust-region and line-search
frameworks, and I have produced evidence that this approach is efficient for deep
learning problems such as classification and regression from big data. The results show
that the trust-region approach converges much faster than the line-search method,
and, when the batch size is decreased, the trust-region method outperforms the line-
search method in terms of learned performance. See Chapter 5 or our published
paper, Rafati et al. (2018), for more details.

Improving L-BFGS Initialization for Trust-Region Methods
Since the true Hessian matrix is not necessarily positive definite, an extra initializa-
tion condition is required to be introduced when constructing the L-BFGS matrices
to avoid false negative curvature information. I have explored three initialization
methods for the L-BFGS matrices, within a trust-region framework. I have provided
empirical results on a benchmark classification task (the MNIST digits dataset) to
compare the performance of the trust-region algorithm with different L-BFGS initial-
ization methods. See Chapter 5 or our published paper, Rafati and Marcia (2018),
for more details.

Quasi-Newton Optimization Methods in Deep RL
I have contributed to the design of an efficient optimization method, based on the L-
BFGS quasi-Newton method within line search strategy, offering it as an alternative to
SGD methods. This new method bridges the disparity between first-order methods
and second-order methods by continuing to use gradient information to calculate
low-rank Hessian approximations. I have produced empirical results applying this
method to RL agents learning a subset of the classic ATARI 2600 games. The results
show a robust convergence with preferred generalization characteristics, as well as
fast training time and no need for an experience replay mechanism. I have also
conducted a formal analysis on the effect of different optimization methods on the
performance of deep RL algorithms, and I have assessed the resulting quality of
learned representations. See Chapter 6 or our unpublished manuscript, Rafati and
Marcia (2019), for more details.

Chapter 7. Concluding Remarks 121

7.2 Future Work
Representation learning in machine learning, deep learning, and reinforcement learn-
ing is an open problem. In this dissertation, we focused on a small subset of methods
for learning representations within temporal difference learning framework, a model-
free reinforcement learning. The proposed methods can be modified and used within
model-based reinforcement learning. In model-based approach, the agent can incor-
porate planning into the learning process by learning a model of the environment.
In future work, I will study methods for learning representations of the agent’s state
within the model-based reinforcement learning framework.

Proofs on effectiveness of the proposed methods in this dissertation (as well as
majority of the deep learning and the deep RL literature) rely on the empirical results
on some numerical simulations, which are very time consuming. In the future, I will
attempt to produce formal convergence analyses in order to compute upper-bounds
and lower-bounds of each proposed method in order to analyze the limits and power
of each method.

Model selection is another major open problem in machine learning and rein-
forcement learning that I have not addressed in this dissertation. In future work,
I will study different families of function approximators for the value function and
investigate their effects on learning representations of the agent’s state.

The proposed methods of this dissertation can be applied to a set of real-world
applications, such as autonomous driving, robotics, economics, and any other large-
scale applications that require learning optimal decision making policies to maximize
a profit and minimize a loss. In the future, I will investigate the effectiveness of the
proposed methods on real-world applications.

Bibliography

Adhikari, L., DeGuchy, O., Erway, J. B., Lockhart, S., and Marcia, R. F. (2017).
Limited-memory trust-region methods for sparse relaxation. In Wavelets and Spar-
sity XVII, volume 10394. International Society for Optics and Photonics.

Albus, J. S. (1975). A new approach to manipulator control: The cerebellar model
articulation controller CMAC. Journal of Dynamic Systems, Measurement, and
Control, 97(3):220–227.

Ammar, H. B., Tuyls, K., Taylor, M. E., Driessens, K., and Weiss, G. (2012). Re-
inforcement learning transfer via sparse coding. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems - Volume 1,
AAMAS ’12.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017).
Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine,
34(6):26–38.

Bacon, P., Harb, J., and Precup, D. (2017). The option-critic architecture. In AAAI.

Badre, D., Kayser, A., and D’Esposito (2010). Frontal cortex and the discovery of
abstract action rules. Neuron, 66:315–326.

Bakker, B. and Schmidhuber, J. (2004). Hierarchical reinforcement learning based on
subgoal discovery and subpolicy specialization. In Proceedings of the 8-th Confer-
ence on Intelligent Autonomous Systems, IAS-8, pages 438–445.

Barto, A. G. and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13(1):41–77.

Bellemare, M., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learn-
ing environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R.
(2016). Unifying count-based exploration and intrinsic motivation. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, Advances in
Neural Information Processing Systems 29, pages 1471–1479. Curran Associates,
Inc.

122

Bibliography 123

Bellemare, M. G., Veness, J., and Bowling, M. H. (2012). Investigating contingency
awareness using atari 2600 games. In Twenty-Sixth AAAI Conference on Artificial
Intelligence.

Berahas, A. S., Nocedal, J., and Takac, M. (2016). A multi-batch L-BFGS method
for machine learning. In Advances in Neural Information Processing Systems 29,
pages 1055–1063.

Bertsekas, D. P. (2000). Dynamic Programming and Optimal Control. Athena Scien-
tific, 2nd edition.

Bollapragada, R., Byrd, R., and Nocedal, J. (2016). Exact and inexact subsampled
non methods for optimization. ArXiv e-prints.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer.

Bottou, L., Curtis, F., and Nocedal, J. (2018). Optimization methods for large-scale
machine learning. SIAM Review, 60(2):223–311.

Botvinick, M. and Weinstein, A. (2014). Model-based hierarchical reinforcement
learning and human action control. Philosophical Transactions of the Royal Society
B: Biological Sciences, 369.

Botvinick, M. M., Niv, Y., and Barto, A. C. (2009). Hierarchically organized behav-
ior and its neural foundations: A reinforcement learning perspective. Cognition,
113(3):262–280.

Boyan, J. A. and Moore, A. W. (1995). Generalization in reinforcement learning:
Safely approximating the value function. In Tesauro, G., Touretzky, D. S., and
Leen, T. K., editors, Advances in Neural Information Processing Systems 7, pages
369–376, Cambridge, MA. MIT Press.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). OpenAI Gym.

Broyden, C. G. (1970). The convergence of a class of double-rank minimization algo-
rithms 1. general considerations. SIAM Journal of Applied Mathematics, 6(1):76–
90.

Brust, J., Burdakov, O., Erway, J. B., and Marcia, R. F. (2017a). Dense initializations
for limited-memory quasi-newton methods. ArXiv e-prints.

Brust, J., Erway, J. B., and Marcia, R. F. (2017b). On solving L-SR1 trust-region
subproblems. Computational Optimization and Applications, 66(2):245–266.

Bibliography 124

Burdakov, O., Gong, L., Yuan, Y.-X., and Zikrin, S. (2016). On efficiently com-
bining limited memory and trust-region techniques. Mathematical Programming
Computation, 9:101–134.

Byrd, R. H., Hansen, S. L., Nocedal, J., and Singer, Y. (2016). A stochastic
quasi-newton method for large-scale optimization. SIAM Journal on Optimiza-
tion, 26(2):1008–1031.

Byrd, R. H., Nocedal, J., and Schnabel, R. B. (1994). Representations of quasi-
Newton matrices and their use in limited-memory methods. Math. Program.,
63:129–156.

Chalmers, E., Luczak, A., and Gruber, A. J. (2016). Computational properties of the
hippocampus increase the efficiency of goal-directed foraging through hierarchical
reinforcement learning. Frontiers in Computational Neuroscience, 10.

Conn, A. R., Gould, N. I. M., and Toint, P. L. (2000). Trust-Region Methods. Society
for Industrial and Applied Mathematics, Philadelphia, PA.

Dayan, P. (1992). The convergence of TD(λ) for general λ. Machine Learning, 8:341–
362.

Dayan, P. and Hinton, G. E. (1992). Feudal reinforcement learning. In NeurIPS.

Dayan, P. and Niv, Y. (2008). Reinforcement learning: The good, the bad and the
ugly. Current Opinion in Neurobiology, 18:185–196.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research, 13:227–303.

Diuk, C., Schapiro, A., Córdova, N., Ribas-Fernandes, J., Niv, Y., and Botvinick,
M. (2013). Divide and conquer: hierarchical reinforcement learning and task de-
composition in humans. In Computational and robotic models of the hierarchical
organization of behavior, pages 271–291. Springer.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Research,
12:2121–2159.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2019).
Go-explore: a new approach for hard-exploration problems. ArXiv e-prints
arXiv:1901.10995.

Erway, J. B., Griffin, J., Marcia, R. F., and Omheni, R. (2018). Trust-region algo-
rithms for training responses: Machine learning methods using indefinite hessian
approximations. ArXiv e-prints.

Bibliography 125

Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer
Journal, 13(3):317–322.

Fox, R., Krishnan, S., Stoica, I., and Goldberg, K. Y. (2017). Multi-level discovery
of deep options. arXiv preprint arXiv:1703.08294.

Fragkiadaki, K., Arbelaez, P., Felsen, P., and Malik, J. (2015). Learning to segment
moving objects in videos. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4083–4090.

French, R. M. (1991). Using semi-distributed representations to overcome catas-
trophic forgetting in connectionist networks. In Proceedings of the 13th Annual
Cognitive Science Society Conference, pages 173–178, Hillsdale, NJ. Lawrence Erl-
baum.

Gay, D. M. (1981). Computing optimal locally constrained steps. SIAM Journal on
Scientific and Statistical Computing, 2(2):186–197.

Goel, S. and Huber, M. (2003). Subgoal discovery for hierarchical reinforcement
learning using learned policies. In FLAIRS Conference, pages 346–350. AAAI
Press.

Goldfarb, D. (1970). A family of variable-metric methods derived by variational
means. Mathematics of computation, 24(109):23–26.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learn-
ing: data mining, inference and prediction. Springer, 2 edition.

Hausknecht, M., Lehman, J., Miikkulainen, R., and Stone, P. (2014). A neuroevolu-
tion approach to general atari game playing. IEEE Transactions on Computational
Intelligence and AI in Games, 6(4):355–366.

Hengst, B. (2010). Hierarchical Reinforcement Learning, pages 495–502. Springer US,
Boston, MA.

Hodge, V. J. and Austin, J. (2004). A survey of outlier detection methodologies.
Artificial Intelligence Review, 22(2):85–126.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). On the convergence of stochastic
iterative dynamic programming algorithms. Neural Computation, 6(6):1185–1201.

Kandel, E., Schwartz, J., Jessell, T., Siegelbaum, S., and Hudspeth, A. J. (2012).
Principles of Neural Science. McGraw-Hill, New York, fifth edit edition.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Bibliography 126

Krishnamurthy, R., Lakshminarayanan, A. S., Kumar, P., and Ravindran, B. (2016).
Hierarchical reinforcement learning using spatio-temporal abstractions and deep
neural networks. ArXiv e-prints (arxiv:1605.05359).

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. (2016). Hierarchical
deep reinforcement learning: Integrating temporal abstraction and intrinsic moti-
vation. In Advances in Neural Information Processing Systems, pages 3675–3683.

Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., and Ng, A. Y. (2011a). On
optimization methods for deep learning. In Proceedings of the 28th International
Conference on International Conference on Machine Learning, pages 265–272.

Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., and Ng, A. Y. (2011b). On
optimization methods for deep learning. In Proceedings of the 28th International
Conference on International Conference on Machine Learning, pages 265–272. Om-
nipress.

LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y. and Others (2015). Lenet5, convolutional neural networks. page 20.

Levy, K. Y. and Shimkin, N. (2011). Unified inter and intra options learning us-
ing policy gradient methods. In European Workshop on Reinforcement Learning.
Springer.

Li, Z., Narayan, A., and Leong, T.-Y. (2017). An efficient approach to model-based
hierarchical reinforcement learning.

Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large
scale optimization. Mathematical programming, 45(1-3):503–528.

Liu, V., Kumaraswamy, R., Le, L., and White, M. (2018). The utility of sparse
representations for control in reinforcement learning. arXiv e-prints (1811.06626).

Lyu, D., Yang, F., Liu, B., and Gustafson, S. (2019). SDRL: Interpretable and
Data-efficient Deep Reinforcement Learning Leveraging Symbolic Planning. In
33rd AAAI Conference on Artificial Intelligence (AAAI-19), Honolulu, HI, USA.

Machado, M. C., Bellemare, M. G., and Bowling, M. H. (2017). A Laplacian Frame-
work for Option Discovery in Reinforcement Learning. In Proceedings of the 34th
International Conference on Machine Learning, {ICML} 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, pages 2295–2304.

Bibliography 127

Machado, M. C. and Bowling, M. (2016). Learning purposeful behaviour in the
absence of rewards.

Maillard, O., Ryabko, D., and Munos, R. (2011). Selecting the state-representation
in reinforcement learning. In Advances in Neural Information Processing Systems
24, pages 2627–2635. Curran Associates, Inc.

Mannor, S., Menache, I., Hoze, A., and Klein, U. (2004). Dynamic abstraction in re-
inforcement learning via clustering. In Proceedings of the Twenty-first International
Conference on Machine Learning, ICML ’04.

Martens, J. (2010). Deep learning via Hessian-free optimization. In Proc. of the 27th
Intl.˜Conf.˜on Machine Learning (ICML), pages 735–742.

Martens, J. and Sutskever, I. (2011). Learning recurrent neural networks with hessian-
free optimization. In Proceedings of the 28th International Conference of on Ma-
chine Learning (ICML11), pages 1033–1040.

Martens, J. and Sutskever, I. (2012). Training deep and recurrent networks with
hessian-free optimization. In Neural Networks: Tricks of the Trade, pages 479–535.
Springer.

McGovern, A. and Barto, A. G. (2001). Automatic discovery of subgoals in reinforce-
ment learning using diverse density. In Proceedings of the Eighteenth International
Conference on Machine Learning, ICML ’01, pages 361–368.

Melo, F. S., Meyn, S. P., and Ribeiro, M. I. (2008). An analysis of reinforcement
learning with function approximation. In Proceedings of the 25th International
Conference on Machine Learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. A. (2013). Playing atari with deep reinforcement learning. ArXiv
e-prints (arxiv:1312.5602).

Mnih, V., Kavukcuoglu, K., Silver, D., and Others (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533.

Montague, P. R., Dayan, P., and Sejnowski, T. J. (1996). A framework for mes-
encephalic dopamine systems based on predictive hebbian learning. Journal of
Neuroscience, 16:1936–1947.

Moré, J. J. and Sorensen, D. C. (1983). Computing a trust region step. SIAM Journal
on Scientific and Statistical Computing, 4(3):553–572.

Nesterov, Y. (2013). Introductory Lectures on Convex Optimization: A Basic Course.
Springer Science & Business Media.

Bibliography 128

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, New York,
2nd edition.

Noelle, D. C. (2008). Function follows form: Biologically guided functional decom-
position of memory systems. In Biologically Inspired Cognitive Architectures —
Papers from the 2008 AAAI Fall Symposium.

O’Reilly, R. C. (2001). Generaliztion in interactive networks: The benefits of in-
hibitory competition and Hessian learning. Neural Computation, 13:1199–1242.

O’Reilly, R. C. and McClelland, J. L. (1994). Hippocampal conjunctive encoding,
storage, and recall: Avoiding a trade-off. Hippocampus, 4(6):661–682.

O’Reilly, R. C. and Munakata, Y. (2001). Computational Explorations in Cognitive
Neuroscience. MIT Press, Cambridge, Massachusetts.

Parr, R. and Russell, S. J. (1997). Reinforcement learning with hierarchies of ma-
chines. In NeurIPS.

Pearlmutter, B. A. (1994). Fast exact multiplication by the hessian. Neural Compu-
tation, 6(1):147–160.

Pickett, M. and Barto, A. G. (2002). Policyblocks: An algorithm for creating useful
macro-actions in reinforcement learning. In Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning, pages 506–513.

Preston, A. R. and Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal
cortex in memory. Current Biology, 23(17):764–773.

Rafati, J., DeGuchy, O., and Marcia, R. F. (2018). Trust-region minimization algo-
rithm for training responses (TRMinATR): The rise of machine learning techniques.
In 26th European Signal Processing Conference (EUSIPCO 2018), Rome, Italy.

Rafati, J. and Marcia, R. F. (2018). Improving L-BFGS initialization for trust-region
methods in deep learning. In 17th IEEE International Conference on Machine
Learning and Applications, Orlando, Florida.

Rafati, J. and Marcia, R. F. (2019). Deep reinforcement learning via L-BFGS opti-
mization. arXiv e-print (arXiv:1811.02693).

Rafati, J. and Noelle, D. C. (2015). Lateral inhibition overcomes limits of temporal
difference learning. In Proceedings of the 37th Annual Cognitive Science Society
Meeting, Pasadena, CA, USA.

Rafati, J. and Noelle, D. C. (2017). Sparse coding of learned state representations in
reinforcement learning. In Conference on Cognitive Computational Neuroscience,
New York City, NY, USA.

Bibliography 129

Rafati, J. and Noelle, D. C. (2019a). Learning representations in model-free hierar-
chical reinforcement learning. In 33rd AAAI Conference on Artificial Intelligence
(AAAI-19), Honolulu, HI, USA.

Rafati, J. and Noelle, D. C. (2019b). Learning representations in model-free hierar-
chical reinforcement learning. arXiv e-print (arXiv:1810.10096).

Rafati, J. and Noelle, D. C. (2019c). Unsupervised methods for subgoal discovery dur-
ing intrinsic motivation in model-free hierarchical reinforcement learning. In 33rd
AAAI Conference on Artificial Intelligence (AAAI-19). Workshop on Knowledge
Extraction From Games. Honolulu, HI, USA.

Rafati, J. and Noelle, D. C. (2019d). Unsupervised subgoal discovery method for
learning hierarchical representations. In 7th International Conference on Learning
Representations, ICLR 2019 Workshop on “Structure & Priors in Reinforcement
Learning”, New Orleans, Louisiana.

Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In Advances in neural information
processing systems, pages 693–701.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals
of Mathematical Statistics, 22(3):400–407.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323:533–536.

Schulman, J., Levine, S., Moritz, P., Jordan, M., and Abbeel, P. (2015). Trust
region policy optimization. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning.

Schultz, W., Apicella, P., and Ljungberg, T. (1993). Responses of monkey dopamine
neurons to reward and conditioned stimuli during successive steps of learning a
delayed response task. Journal of Neuroscience, 13:900–913.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of prediction
and reward. Science, 275(5306):1593–1599.

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimiza-
tion. Mathematics of computation, 24(111):647–656.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489.

Bibliography 130

Simsek, Ö., Algorta, S., and Kothiyal, A. (2005). Identifying useful subgoals in
reinforcement learning by local graph partitioning. In Proceedings of the 22nd
International Conference on Machine Learning, pages 816–823.

Singh, S., Lewis, R. L., Barto, A. G., and Sorg, J. (2010). Intrinsically motivated
reinforcement learning: An evolutionary perspective. IEEE Transaction on Au-
tonomous Mental Development, 2(2):70–82.

Singh, S. P. (1992). Transfer of learning by composing solutions of elemental sequen-
tial tasks. Machine Learning, 8:323–339.

Stolle, M. and Precup, D. (2002). Learning options in reinforcement learning. In
Proceedings of the 5th International Symposium on Abstraction, Reformulation and
Approximation, pages 212–223.

Strange, B. A., Witter, M. P., Lein, E. S., and Moser, E. I. (2014). Functional
organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience,
15(10):655–669.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning, 3:9–44.

Sutton, R. S. (1991). Dyna, an integrated architecture for learning, planning, and
reacting. ACM SIGART Bulletin, 2(4):160–163.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples
using sparse coarse coding. In Advances in Neural Information Processing Systems
8, pages 1038–1044.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1st edition.

Sutton, R. S. and Barto, A. G. (2017). Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA, 2nd edition.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial Intelli-
gence, 112(1):181–211.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning
domains: A survey. JMLR, 10(Jul):1633–1685.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications
of the ACM, 38(3).

Thrun, S. and Schwartz, A. (1995). Finding structure in reinforcement learning. In
Advances in Neural Information Processing Systems 7, pages 385–392. MIT Press.

Bibliography 131

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D.,
and Kavukcuoglu, K. (2017). Feudal networks for hierarchical reinforcement learn-
ing. In Proceedings of Thirty-fourth International Conference on Machine Learning
(ICML-17).

Vigorito, C. M. and Barto, A. G. (2010). Intrinsically motivated hierarchical skill
learning in structured environments. IEEE Transactions on Autonomous Mental
Development, 2(2):132–143.

Wah, J. L. and Chuei, Y. C. (2013). A class of diagonal preconditioners for limited
memory BFGS method. Optimization Methods and Software, 28(2):379–392.

Wolfe, P. (1969). Convergence conditions for ascent methods. SIAM Review,
11(2):226–235.

Xu, P., Roosta-Khorasan, F., and Mahoney, M. (2017). Second-order optimization
for non-convex machine learning: An empirical study. ArXiv e-prints.

Yoshimi, J. (2017). Modeling consciousness using cognitive maps. Mind and Matter,
15(1):29–47.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. ArXiv e-prints
(arxiv:1212.5701).

Zhang, Z., Xu, Y., Yang, J., Li, X., and Zhang, D. (2015). A survey of sparse
representation: Algorithms and applications. IEEE Access, 3:490–530.

	List of Symbols
	List of Figures
	List of Tables
	List of Algorithms
	Preface
	Acknowledgment
	Curriculum Vita
	Abstract
	Introduction
	Motivation
	Dissertation Outline, and Objectives

	Reinforcement Learning
	Reinforcement Learning Problem
	Agent and Environment interaction
	Policy Function
	Objective in RL

	Markov Decision Processes
	Formal Definition of MDP
	Value Function.
	Bellman Equations
	Optimal Value Function
	Value iteration algorithm

	Reinforcement Learning algorithms
	Value-based vs Policy-based Methods
	Bootstrapping vs Sampling
	Model-Free vs Model-Based RL

	Temporal Difference Learning
	SARSA
	Q-Learning

	Generalization in Reinforcement Learning
	Feed-forward Neural Networks
	Loss Function as Expectation of TD Error

	Empirical Risk Minimization in Deep RL

	Learning Sparse Representations in Reinforcement Learning
	Introduction
	Background
	Methods for Learning Sparse Representations
	Lateral inhibition
	k-Winners-Take-All mechanism
	Feedforward kWTA neural network

	Numerical Simulations
	Experiment design
	The Puddle-world task
	The Mountain-car task
	The Acrobot task

	Results and Discussions
	The puddle-world task
	The mountain-car task
	The Acrobot task

	Future Work
	Conclusions

	Learning Representations in Model-Free Hierarchical Reinforcement Learning
	Introduction
	Failure of RL in Tasks with Sparse Feedback
	Hierarchical Reinforcement Learning
	Subgoals vs. Options
	Spatiotemporal Hierarchies
	Hierarchical Reinforcement Learning Subproblems

	Meta-controller/Controller Framework
	Intrinsic Motivation Learning
	Experiment on Intrinsic Motivation Learning
	Training the State-Goal Value Function
	Intrinsic Motivation Performance Results
	Reusing Learned Skills

	Unsupervised Subgoal Discovery
	Anomaly Detection
	K-Means Clustering
	Mathematical Interpretation

	A Unified Model-Free HRL Framework
	Experiments on Unified HRL Framework
	4-Room Task with Key and Lock
	Montezuma's Revenge

	Neural Correlates of Model-Free HRL
	Future Work
	Learning Representations in Model-based HRL
	Solving Montezuma's Revenge

	Conclusions

	Trust-Region Methods for Empirical Risk Minimization
	Introduction
	Existing Methods
	Motivation and Objectives

	Background
	Unconstrained Optimization Problem
	Recognizing A Local Minimum
	Main Algorithms

	Optimization Strategies
	Line Search Method
	Trust-Region Qausi-Newton Method

	Quasi-Newton Optimization Methods
	The BFGS Update
	The SR1 Update
	Compact Representations
	Limited-Memory quasi-Newton methods
	Trust-Region Subproblem Solution

	Experiment on L-BFGS Line Search vs. Trust Region
	LeNet-5 Convolutional Neural Network Architecture
	MNIST Image Classification Task
	Results

	Proposed Quasi-Newton Matrix Initializations
	Initialization Method I
	Initialization Method II
	Initialization Method III

	Experiments on L-BFGS Initialization
	Computing Gradients
	Multi-batch Sampling
	Computing yk
	Other Parameters
	Results and Discussions

	Future Work
	Conclusions

	Quasi-Newton Optimization in Deep Reinforcement Learning
	Introduction
	Optimization Problems in RL
	Line-search L-BFGS Optimization
	Line Search Method
	Quasi-Newton Optimization Methods
	The BFGS Quasi-Newton Update
	Limited-Memory BFGS

	Deep L-BFGS Q Learning Method
	Convergence Analysis
	Convergence of empirical risk
	Value Optimality
	Computation time

	Experiments on ATARI 2600 Games
	Results and Discussions
	Future Work
	Conclusions

	Concluding Remarks
	Summary of Contributions
	Future Work

	Bibliography

