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Convergence of Reinforcement Learning
Temporal Difference (TD) Learning is a leading account of 
the role of the dopamine system in reinforcement learning. 
TD Learning has been shown to fail to learn some fairly 
simple control tasks, however, challenging this explanation of 
reward-based learning. We conjecture that such failures do 
not arise in the brain because of the ubiquitous presence of 
lateral inhibition in the cortex, producing sparse distributed 
internal representations that support the learning of expected 
future reward. We provide support for this position by 
demonstrating the benefits of learned sparse representations 
for two problematic control tasks: mountain car and acrobat.
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Sparse Coded State Representations

CMAC

Sutton (1996) provided evidence that the 
sparse coarse coding of state representations 
can address the problem of failure to 
converge during reinforcement learning, when 
using a value function approximator, as 
reported by Boyan & Moore (1995). The 
proposed approach required the engineering 
of appropriate sparse coarse codes for each 
learning problem, however. A more general 
learning mechanism could be had if sparse 
coded internal state representations were 
learned, rather than engineered. Sensory System
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Lateral Inhibition
Learning in a value function approximator 
could be regularized to encourage the 
development of sparse coarse codes. An 
alternative is to introduce a homeostatic 
dynamic that rapidly adapts state 
representations to a fixed level of sparsity. 
 
Fast pooled lateral inhibition is ubiquitous in 
mammalian cortex. There is evidence that 
lateral inhibition can introduce a soft 
k-winners-take-all (kWTA) attractor dynamic 
(O’Reilly, 2001) that produces sparsity.
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The simple control tasks investigated by Boyan & 
Moore (1995) and Sutton (1996) were examined using 
three different value function approximators:
• linear mapping from sensory inputs to value
• backpropagation network with a single hidden layer
• backpropagation network with a single hidden layer 

and kWTA enforced (k = 10% of hidden units)
Sensory input representations were identical across the 
three conditions, and hidden layers were matched in 
size. Results on the “puddle world” task have already 
been reported (Rafati & Noelle, 2015).
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Acrobat Task
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