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Temporal Difference (TD) Learning is a leading account of
the role of the dopamine system in reinforcement learning.

TD Learning has been shown to fail to learn some fairly
simple control tasks, however, challenging this explanation of

reward-based learning. We conjecture that such failures do
not arise in the brain because of the ubiquitous presence of
lateral inhibition in the cortex, producing sparse distributed

internal representations that support the learning of expected

future reward. We provide support for this position by

demonstrating the benefits of learned sparse representations

for two problematic control tasks: mountain car and acrobat.

Sparse Coded State Representations

Generalization in Reinforcement

University of California, Merced

{jrafatiheravi, dnoelle}@ucmerced.edu

No prediction
e Reward occurs
[ mﬂ—'—w L—*—‘ﬂ
| Adaptive Critic Actor I . AT P
: r 5 | / | (no CS) R
[
A A A
I i ‘La :
' Sensory Motor |
: System System I
_T _______________ I o CS, Sl e ﬁ
state 5) . Environment <<ien(@) Reward predctd

0

Learning: Successful Examples Using
Sparse Coarse Coding

Richard S. Sutton

University of Massachusetts
Ambherst, MA 01003 USA

rich@cs.umass.edu
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Abstract

On large problems, reinforcement learning systems must use parame-
terized function approximators such as neural networks in order to gen-

eralize between similar situations and actions. In these cases there are
no strong theoretical results on the accuracy of convergence, and com-

putational results have been mixed. In particular, Boyan and Moore
reported at last year’s meeting a series of negative results in attempting
to apply dynamic programming together with function approximation
to simple control problems with continuous state spaces. In this paper,
we present positive results for all the control tasks they attempted, and
for one that is significantly larger. The most important differences are
that we used sparse-coarse-coded function approximators (CMACs)
whereas they used mostly global function approximators, and that we
learned online whereas they learned offline. Boyan and Moore and

Lateral Inhibition

Learning in a value function approximator
could be regularized to encourage the
development of sparse coarse codes. An
alternative is to introduce a homeostatic
dynamic that rapidly adapts state
representations to a fixed level of sparsity.

Fast pooled lateral inhibition is ubiquitous in
mammalian cortex. There is evidence that
lateral inhibition can introduce a soft
kK-winners-take-all (KWTA) attractor dynamic
(O’Reilly, 2001) that produces sparsity.
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Sutton (1996) provided evidence that the
sparse coarse coding of state representations
can address the problem of failure to
converge during reinforcement learning, when

using a value function approximator, as

reported by Boyan & Moore (1995). The

proposed approach required the engineering
of appropriate sparse coarse codes for each
learning problem, however. A more general
learning mechanism could be had if sparse
coded internal state representations were
learned, rather than engineered.
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Generalization in Reinforcement Learning:
Safely Approximating the Value Function

* backpropagation network with a single hidden

* backpropagation network with a single hidden
and KWTA enforced (k = 10% of hidden units)

Sensory input representations were identical across the
three conditions, and hidden layers were matched in
esults on the “puddle world” task have already
been reported (Rafati & Noelle, 2015).
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Abstract

A straightforward approach to the curse of dimensionality in re-
inforcement learning and dynamic programming is to replace the
lookup table with a generalizing function approximator such as a neu-
ral net. Although this has been successful in the domain of backgam-
mon, there is no guarantee of convergence. In this paper, we show
that the combination of dynamic programming and function approx-
imation is not robust, and in even very benign cases, may produce
an entirely wrong policy. We then introduce Grow-Support, a new
algorithm which is safe from divergence yet can still reap the benefits
of successful generalization.
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Sensory System

The simple control tasks investigated by Boyan &
Moore (1995) and Sutton (1996) were examined using
three different value function approximators:

* linear mapping from sensory inputs to value
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