Lateral Inhibition Overcomes Limits of Temporal Difference Learning
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Abstract

: : : e The midbrain dopamine (DA) system is essential for
There is growing support for Temporal Difference reward-based learning and adaptation to the

(TD) Learning as a formal account of the role of the environment.

midbrain dopamine system and the basal ganglia in  Temporal Difference (TD) Learning is a powerful class
learning from reinforcement. This account is of reinforcement learning algorithms which

challenged, however, by the fact that realistic successfully describes the information processing role
implementations of TD Learning have been shown to of DA in learning.
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¢ Encode the state of the agent in a more continuous manner,
modeling the mapping from sensory information to state 35|
representation.

s Allow the value function approximator to learn an
appropriate sparse conjunctive representation of the agent
state (without hand-wiring that encoding). Such a
representation can arise by employing a k-Winners-Take-All
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fail on some fairly simple learning tasks — tasks well . . . . 15T |
within the capabilities of humans and non-human TempOral Difference Learn'“g .(kV\./T.A.) m.ECh?mSW.]' akin to the result of fast pooled lateral 10 1 1
animals. We hypothesize that such failures do not e ——— | e — | inhibition in biological neural networks. | | succosrare=ssn Successrate=99.0%  Successrate=999%
arise from natural learning systems because of the : SRR | A : CEREEE L A 0 00
ubiquitous appearance of lateral inhibition in the | rééﬁ'a) o /n(s) | | - </va o /DLS | i Linear BP kWTA
cortex, producing sparse conjunctive internal B p— K s | ' - > A K | N S E W . . .
representations that support the learning of | sensory | [ Motor | [ sensory | [ Motor | output Q(s,a) Conclusmns, Discussion & Future Work
predictions of future reward. We provide support for e ] } e ] | E y 1 | | o
this conjecture through computational simulations Tstatem Py ——E ST Tstatem Ervironment laction (@ = | A mechanllsm for learning sparse conjunctive codes for
that compare TD Learning systems with and without c—i i the agent’s sensory state c.an help ove.rcom.e learning
lateral inhibition, demonstrating the benefits of : 5 : problgms obseryed when using TD Learning with a value
sparse conjunctive codes for reinforcement learning. TD SARSA Algorlthm | i fun.ct.-|o.n approximator. .

sensory input (encoder) 0 X ] O Artificial neural networks can be biased toward

initialize Q(s,a) arbitrarily;
for each episode
initialize s;
choose a from s using policy derived from Q (e-greedy);
while (s != goal or steps# < allowed#)
take action a, get reward r, update state to s’;
choose a’ from s’ using policy derived from Q;

producing sparse codes over their hidden units by
including a process akin to the sort of pooled lateral
inhibition that is ubiquitous in the cerebral cortex.

J These results support the hypothesis that the

For each sensory state, k winner
neurons in hidden layer generate
sparse conjunctive representations.
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e e 5 =1r + vQ(s',a’) - Q(s,a); % compute TD error midbrain dopamine system implements a form of
¢ /aterallnhlbltlon Q(s,a) = Q(s,a) + ad; % update value function . . .
S =8 a=a TD learning, and observed problems with TD Learning do

Results: Optimum Values & Policy Maps

sparse conjunctive codes end

. t | not arise in the brain because sensory
computational cognitive neuroscience end

state information is encoded using circuits that make use
of lateral inhibition.

Future directions:

*** We are extending this work by applying our kWTA value
function approximator to other reinforcement learning
problems that have posed difficulties for TD Learning
(“mountain car” and “acrobat” control problems).

** The brain’s hippocampus can be seen as generating

Estimate of Value Function .
Policy map

The Problem

Problem: Sometimes the space of sensory states of the
reinforcement learning agent is so large that it is intractable
to store the agent’s learned value (i.e. expectation of future
reward) for each state in a look-up table.

Solution: Use a function approximator, such as an artificial
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Linear NN
(without hidden layer)

neural network, to map sensory states and considered
actions to values, encoding the value function Q(s,a).
Benefits: This approach supports generalization by including
a bias toward mapping similar sensory states to
similar predictions of future reward.

Problem: When a function approximator is used to
encode the value function, TD learning can fail, even on
some simple learning tasks.

_Qmax
ok

wn O
o O

backpropagation NN
(without lateral inhibition)

[
>
ddd
da
»>p X
>
444

PEPVYYYYVVYYVYVI DD IP)
dddddddddddorlddddd

dddddddddad
dddadadalldaiddada

diddcddeddddd

PYVYVAAAAAAAAAC

PP PVVYVYYVYVYYVVVYVYVYYY D)

ddeddadddeddddadiiida

YYVYVY
>rv
= PP PP D)

>
>
>
>
>
>

sparse conjunctive representations. We are exploring the
utility of mechanisms like those theorized to arise in the
hippocampus to support hierarchically organized learning
tasks.
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Case study task: Navigation in 2D puddle world ¢
Estimate of Value Function
Puddle world task ~ Policy map References
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