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Games



Goals & Rules
• “Key components of games are goals, rules, challenge, 

and interaction. Games generally involve mental or 
physical stimulation, and often both.”

https://en.wikipedia.org/wiki/Game



Reinforcement Learning
Reinforcement learning (RL) is learning how to map 
situations (state) to actions so as to maximize numerical 
reward signals received during the experiences that an 
artificial agent has as it interacts with its environment.

et = {st, at, st+1, rt+1}experience:

(Sutton and Barto, 2017)

Objective: Learn ⇡ : S ! A to maximize cumulative rewards



Super-Human Success

(Mnih. et. al., 2015)



(Mnih. et. al., 2015)

Failure in a complex task



Learning Representations  
in Hierarchical Reinforcement Learning

• Trade-off between exploration and exploitation in an 
environment with sparse feedback is a major challenge.


• Learning to operate over different levels of temporal 
abstraction is an important open problem in reinforcement 
learning. 


• Exploring the state-space while learning reusable skills 
through intrinsic motivation.


• Discovering useful subgoals in large-scale hierarchical 
reinforcement learning is a major open problem. 



Return
Return is the cumulative sum of a received reward: 

st st+1

rt+1

st�1

rtrt�1

atat�1
s0 sT

Gt =
TX

t0=t+1

�t0�t�1rt0

� 2 [0, 1] is the discount factor



Policy Function
• Policy Function: At each time step agent implements a 

mapping from states to possible actions

⇡ : S ! A

• Objective: Finding an optimal policy that maximizes the 
cumulated rewards

⇡⇤ = argmax
⇡

E
⇥
Gt|St = s

⇤
, 8s 2 S



Q-Function
• State-Action Value Function is the expected return when 

starting from (s,a) and following a policy thereafter 

Q⇡ : S ⇥A ! R

Q⇡(s, a) = E⇡[Gt|St = s,At = a]



Temporal Difference
• Model-free reinforcement learning algorithm.


• State-transition probabilities or reward function are not available


• A powerful computational cognitive neuroscience model of 
learning in brain


• A combination of Monte Carlo method and Dynamic Programming 

Q-learning 
Q(s, a) Q(s, a) + ↵[r + �max

a0
Q(s0, a0)�Q(s, a)]

Q(s, a) ! prediction of return

r + �max
a0

Q(s0, a0) ! target value



State Function 
Approximator

state-action 
Values

...

...
q(s, ai;w)

Generalization

w q(s, a;w)s

Q(s, a) ⇡ q(s, a;w)



Deep RL
min
w

L(w)

w = argmin
w

L(w)

L(w) = E(s,a,r,s0)⇠D

h�
r +max

a0
q(s0, a0;w�)� q(s, a;w)

�2i

D = {et|t = 0, . . . , T} ! Experience replay memory

Stochastic Gradient Decent method

w  w �rwL(w)



Q-Learning with 
experience replay memory



Failure: Sparse feedback

(Botvinick et al., 2009) Subgoals



Complex 
Task

Simple 
Tasks

Major Goals Minor Goals Actions

Hierarchy in Human Behavior & Brain Structure



Hierarchical Reinforcement Learning 
Subproblems

• Subproblem 1: Learning a meta-policy to choose a 
subgoal


• Subproblem 2: Developing skills through intrinsic 
motivation


• Subproblem 3: Subgoal discovery



Environment Meta-controller

Controller

st+1, rt+1

st

at

Agent

Critic

gt

r̃t+1at
at

Meta-controller/Controller Framework

Kulkarni et. al. 2016



Subproblem 1: Temporal Abstraction



Room 1Room 2

Room 3 Room 4

Rooms Task



Subproblem 2. 
Developing skills through Intrinsic Motivation
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Room 3 Room 4
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Subproblem 3. 
Subgoal Discovery

(Sismek et al., 2005)

(Goel and Huber, 2003)

(Machado, et. al. 2017)

finding proper G



Subproblem 3. 
Subgoal Discovery

• Purpose: Discovering promising states to 
pursue, i.e. finding 


• Implementing subgoal discovery algorithm for 
large-scale model free reinforcement learning 
problem


• No access to MDP models (state-transition 
probabilities, environment reward function, 
State space)

G



Subproblem 3. 
Candidate Subgoals

• It is close (in terms of actions) to a rewarding 
state.


• It represents a set of states, at least some of 
which tend to be along a state transition path 
to a rewarding state.



Subproblem 3. 
Subgoal Discovery

• Unsupervised learning (clustering) on the 
limited past experience memory collected 
during intrinsic motivation


• Centroids of clusters are useful subgoals (e.g. 
rooms)


• Detecting outliers as potential subgoals (e.g. 
key, box)


• Boundary of two clusters can lead to subgoals 
(e.g. doorway between rooms)



Unsupervised Subgoal 
Discovery



Unsupervised Subgoal 
Discovery



Unification of Hierarchical 
Reinforcement Learning Subproblems

• Implementing a hierarchical reinforcement 
learning framework that makes it possible  to 
simultaneously perform subgoal discovery, 
learn appropriate intrinsic motivation, and 
succeed at meta-policy learning


• The unification element is using experience 
replay memory D



Model-Free HRL
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Montezuma’s Revenge
Meta-Controller Controller



Montezuma’s Revenge
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Conclusions
• Unsupervised Learning can be used to discover 

useful subgoals in games.


• Subgoals can be discovered using model-free 
methods.


• Learning in multiple levels of temporal abstraction 
is the key to solve games with sparse delayed 
feedback.


• Intrinsic motivation learning and subgoal 
discovery can be unified in model-free HRL 
framework.
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