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Goals & Rules

o “Key components of games are goals, rules, challenge,
and interaction. Games generally involve mental or
physical stimulation, and often both.”

https://en.wikipedia.org/wiki/Game



Reinforcement Learning

Reinforcement learning (RL) is learning how to map
situations (state) to actions so as to maximize numerical
reward signals received during the experiences that an
artificial agent has as it interacts with its environment.
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(Sutton and Barto, 2017)
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Failure in a complex task
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Learning Representations
in Hierarchical Reinforcement Learning

Trade-off between exploration and exploitation in an
environment with sparse feedback is a major challenge.

Learning to operate over different levels of temporal

abstraction is an important open problem in reinforcement
learning.

Exploring the state-space while learning reusable skills
through Intrinsic motivation.

Discovering useful subgoals in large-scale hierarchical
reinforcement learning is a major open problem.



Return

Return is the cumulative sum of a received reward:

T
/
Gy = E v try

t'=t4+1

v € [0, 1] is the discount factor

at—1 A+
O+ O=D=0-

Tt—1 Tt T't+1



Policy Function

e Policy Function: At each time step agent implements a
mapping from states to possible actions

T S—- A

* Objective: Finding an optimal policy that maximizes the
cumulated rewards

7" = arg max 43[Gt|St — s}, Vs € S

s



Q-Function

e State-Action Value Function is the expected return when
starting from (s,a) and following a policy thereafter

Qr . SxA—-R

Qr(s,a) =E.|G;|S; = s, Ay = a




Temporal Difference

e Model-free reinforcement learning algorithm.
e State-transition probabilities or reward function are not available

e A powerful computational cognitive neuroscience model of
learning in brain

A combination of Monte Carlo method and Dynamic Programming

Q-learning
Q(s,0) < Q(s,a) + afr + ymax Q(s', ) — Q(s,a)
()(s,a) — prediction of return

r+ymaxQ(s’,a’) — target value
a/



Generalization

Q(Sv a) ~ Q(Sv a, w)

m Function state-action
Approximator Values




Deep RL

min L(w)

w = arg min L(w)

L(w) = E(s 4,r.5)~D [(fr‘ +maxq(s’,a’;w™) — q(s, a; w))ﬂ

a

D ={et=0,...,T} — Experience replay memory

Stochastic Gradient Decent method

w — w — Vo L(w)



Q-Learning with
experience replay memory

Algorithm Q-Learning with Experience Replay

Initialize: replay memory D
Initialize: weights of action-value function ¢(s, a;w) arbitrarily
repeat (for each episode)
initialize s
repeat (for each step of episode t =1,...,T)
choose action a using policy derived by ¢(s,a;w) (e.g. e-greedy)
take action a. observe reward r and next state s’
store experience e = (s,a,r, s’) to experience memory D
sample random mini-batch from experience replay memory D

compute V,, L(w)
update weights (e.g. SGD step) w < w — aV, L(w)
S S, a4+ a
until (s is terminal)
until (convergence or reaching to max number of episodes)




Failure: Sparse feedback

| |
(Botvinick et al., 2009) Subgoals



Hierarchy in Human Behavior & Brain Structure




Hierarchical Reinforcement Learning
Subproblems

 Subproblem 1: Learning a meta-policy to choose a
subgoal

* Subproblem 2: Developing skills through intrinsic
motivation

 Subproblem 3: Subgoal discovery



Meta-controller/Controller Framework

Critic

Controller

Kulkarni et. al. 2016



Subproblem 1: Temporal Abstraction

gt gt+T+1

Meta-controller Meta-controller
Q(s,g; W) Q(s,g; W)

a
rel St+T+1

Controller

Controller

q(s, g, a; w) q(s, g, a; w)

(8t+T7 gt)




Rooms lask

Room 2 Room 1

A

Room 3 Room 4



Subproblem 2.
Developing skills through Intrinsic Motivation




State-Goal Q Function
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Reusing the skKkills

Room 2 Room 1

A

Room 3 Room 4



Reusing the skKkills




Reusing the skKkills




Reusing the skills




Reusing the skKkills




Reusing the skKkills




Subproblem 3.

Subgoal D
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Subproblem 3.
Subgoal Discovery

 Purpose: Discovering promising states to
pursue, i.e. finding (4

* I[mplementing subgoal discovery algorithm for
large-scale model free reinforcement learning
problem

* No access to MDP models (state-transition
probabilities, environment reward function,
State space)



Subproblem 3.
Candidate Subgoals

* |t is close (in terms of actions) to a rewarding
state.

* |t represents a set of states, at least some of
which tend to be along a state transition path
to a rewarding state.



Subproblem 3.
Subgoal Discovery

 Unsupervised learning (clustering) on the
limited past experience memory collected
during intrinsic motivation

* Centroids of clusters are useful subgoals (e.qg.
rooms)

e Detecting outliers as potential subgoals (e.qg.
key, box)

* Boundary of two clusters can lead to subgoals
(e.g. doorway between rooms)



Unsupervised Subgoal
Discovery

Anomalous Subgoals
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Unsupervised Subgoal

Discovery




Unification of Hierarchical
Reinforcement Learning Subproblems

* Implementing a hierarchical reinforcement
learning framework that makes it possible to
simultaneously perform subgoal discovery,
learn appropriate intrinsic motivation, and

succeed at meta-policy learning

* The unification element is using experience
replay memory D



Model-Free HRL
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Montezuma’s Revenge
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F.C. Linear (Output)

Q(s, g; W)

F.C. Linear + ReLLU
256 hidden units

Conv + ReLLU
32 (4 x 4) filters

Conv + ReLLU
16 (8 x 8) filters

state
s (4 x84 x 84)

Controller

F.C. Linear (Output)

q(s, g,a; w)
F.C. Linear + ReLU

256 hidden units

Conv + ReLU

32 (4 x 4) filters

Conv + ReLU
16 (8 x 8) filters

state

ubgoal mask
s (4x84x84

g (1 x 84 x 84)

y T°




Success in reaching subgoals %

Montezuma’s Revenge

Q0
S
1

[@p)
(e}
1

W
o
1

[\
(@]
1

(@)
1

—— Qur Unified Model-Free HRL Method

—— DeepMind DQN Algorithm (Mnih et. al., 2015)

500000 1000000 1500000 2000000
Training steps

2500000

Average return over 10 episdes

DO w o

(@) -} (@

o} () )
1 1 1

200

150 ~

100 ~

ot
(@)
1

()
1

— Qur Unified Model-Free HRL Method

—— DeepMind DQN Algorithm (Mnih et. al., 2015)

0 500000 1000000 1500000
Training steps

2000000

2500000



Conclusions

e Unsupervised Learning can be used to discover
useful subgoals in games.

e Subgoals can be discovered using model-free
methods.

e | earning in multiple levels of temporal abstraction
iIs the key to solve games with sparse delayed
feedback.

 I[ntrinsic motivation learning and subgoal
discovery can be unified In model-free HRL
framework.
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