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Introduction,  
Problem Statement 

and Motivations



Unconstrained 
Optimization Problem

min
w2Rn

L(w) , 1

N

NX

i=1

`i(w)

L : Rn ! R



Optimization Algorithms

Bottou et al., (2016) Optimization methods for large-scale machine learning, print arXiv:1606.04838



Optimization Algorithms
1. Start from a random point


2.  Repeat each iteration,                              


3.       Choose a search direction 


4.       Choose a step size


5.       Update parameters 


6. Until 

w0

↵k

wk+1  wk + ↵kpk

k = 0, 1, 2, . . . ,

pk

krLk < ✏



Properties of Objective Function

•                  are both large in modern applications. 

•           is a non-convex and nonlinear function.  

•                is ill-conditioned. 

• Computing full gradient,        is expensive. 

• Computing Hessian,           is not practical.

n and N

L(w)

r2L(w)

r2L

rL

min
w2Rn

L(w) , 1

N

NX

i=1

`i(w)



Stochastic Gradient Decent
1. Sample indices


2. Compute stochastic (subsampled) gradient


3. Assign a learning rate 


4. Update parameters using 

H. Robbins, D. Siegmund. (1971). ”A convergence theorem for non negative almost supermartingales and some applications”. 
Optimizing methods in statistics. 

Sk ⇢ {1, 2, . . . , N}

↵k

wk+1  wk � ↵krL(wk)
(Sk)

rL(wk) ⇡ rL(wk)
(Sk) , 1

|Sk|
X

i2Sk

r`i(wk)

pk = �rL(wk)
(Sk)



Advantages of SGD
• SGD algorithms are very easy to implement.


• SGD requires only computing the gradient.


• SGD has a low cost-per-iteration.

Bottou et al., (2016) Optimization methods for large-scale machine learning, print arXiv:1606.04838



Disadvantages of SGD
• Very sensitive to the ill-conditioning problem and 

scaling.


•  Requires fine-tuning many hyper-parameters.


• Unlikely exhibit acceptable performance on first try. 


• requires many trials and errors.


• Can stuck in a saddle-point instead of local 
minimum.


• Sublinear and slow rate of convergence.
Bottou et al., (2016). Optimization methods for large-scale machine learning. print arXiv:1606.04838 
J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Second-Order Methods
1. Sample indices


2. Compute stochastic (subsampled) gradient


3. Compute Hessian 

Sk ⇢ {1, 2, . . . , N}

rL(wk) ⇡ rL(wk)
(Sk) , 1

|Sk|
X

i2Sk

r`i(wk)

r2L(wk) ⇡ r2L(wk)
(Sk) , 1

|Sk|
X

i2Sk

r2`i(wk)



Second-Order Methods
4. Compute Newton’s direction 


 


5. Find proper step length


 


6. Update parameters

pk = �r2L(wk)
�1rL(wk)

↵k = min
↵

L(wk + ↵pk)

wk+1  wk + ↵kpk



Second-Order Methods 
Advantages

• The rate of convergence is super-linear 
(quadratic for Newton method).


• They are resilient to problem ill-conditioning. 


• They involve less parameter tuning.


• They are less sensitive to the choice of hyper-
parameters.

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Second-Order Methods 
Disadvantages

• Computing the Hessian matrix is very 
expensive and requires massive storage.


• Computing the inverse of Hessian is not 
practical.  

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer. 
Bottou et al., (2016) Optimization methods for large-scale machine learning, print arXiv:1606.04838



Quasi-Newton Methods
1. Construct a low-rank approximation of Hessian


2. Find the search direction by Minimizing the 
Quadratic Model of the objective function

Bk ⇡ r2L(wk)

pk = argmin
p2Rn

Qk(p) , gTk p+
1

2
pTBkp

T



Quasi-Newton Matrices
• Symmetric 
• Easy and Fast Computation 
• Satisfies Secant Condition

Bk+1sk = yk
sk , wk+1 � wk

yk , rL(wk+1)�rL(wk)



Broyden Fletcher Goldfarb Shanno. 

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Broyden Fletcher Goldfarb Shanno. 

Bk+1 = Bk � 1

sTkBksk
Bksks

T
kBk +

1

yTk sk
yky

T
k ,

sk , wk+1 � wk

yk , rL(wk+1)�rL(wk)

B0 = �kI

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Quasi-Newton Methods 
Advantages

• The rate of convergence is super-linear.


• They are resilient to problem ill-conditioning. 


• The second derivative is not required.


• They only use the gradient information to 
construct quasi-Newton matrices.

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Quasi-Newton Methods 
disadvantages

• The cost of storing the gradient informations can 
be expensive.


• The quasi-Newton matrix can be dense.


• The quasi-Newton matrix grow in size and rank 
in large-scale problems.

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Limited-Memory BFGS
Sk =

⇥
sk�m . . . sk�1

⇤
Yk =

⇥
yk�m . . . yk�1

⇤

 k =
⇥
B0Sk Yk

⇤
, Mk =


�ST

k B0Sk �Lk

�LT
k Dk

��1

ST
k Yk = Lk +Dk + Uk

Bk = B0 + kMk 
T
k

L-BFGS Compact Representation

B0 = �kI
where

Limited Memory Storage



Limited-Memory  
Quasi-Newton Methods

• Low rank approximation


• Small memory of recent gradients. 


• Low cost of computation of search direction.


• Linear or superlinear Convergence rate can be 
achieved. 

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Objectives

Bk = B0 + kMk 
T
k

B0 = �kI

What is the best choice for initialization? 



Overview on  
Quasi-Newton 

Optimization Strategies



Line Search Method

pk

wk

Quadratic model

if Bk is positive definite:

pk = argmin
p2Rn

Qk(p) , gTk p+
1

2
pTBkp

T

pk = B�1
k gk

�rL(wk)

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Line Search Method

pk

wk
wk+1

↵kpk

Wolfe conditions

L(wk + ↵kpk)  L(wk) + c1↵krL(wk)
T pk

rL(wk + ↵kpk)
T pk � c2rf(wk)

T pk

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Trust Region Method

wk

�k

pk

Toint et al. (2000), Trust Region Methods, SIAM.

pk = arg min
p2Rn

Q(p)

s.t. kpk2  �k



Trust Region Method
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J. J. Mor´e and D. C. Sorensen, (1984) Newton’s method, in Studies in Mathematics, Volume 24. Studies in Numerical Analysis, Math. Assoc., pp. 29–82.



L-BFGS Trust Region 
Optimization Method



L-BFGS in Trust Region

L. Adhikari et al. (2017) “Limited-memory trust-region methods for sparse relaxation,” in Proc.SPIE, vol. 10394. 
Brust et al, (2017). “On solving L-SR1 trust-region subproblems,” Computational Optimization and Applications, vol. 66, pp. 245–266.

Bk = B0 + kMk 
T
k

Eigen-decomposition

Bk = P


⇤+ �kI 0

0 �kI

�
PT

Sherman-Morrison-Woodbury Formula

p⇤k = � 1

⌧⇤
⇥
I � k(⌧

⇤M�1
k + T

k k)
�1 T

k

⇤
gk,

⌧⇤ = �k + �⇤



L-BFGS in Trust Region vs. Line-Search

26th European Signal Processing Conference, Rome, Italy. September 2018. 



Proposed Methods for 
Initialization of L-BFGS



Initialization Method I

Bk = B0 + kMk 
T
k

B0 = �kI

Spectral estimate of Hessian

�k =
yTk�1yk�1

sTk�1yk�1

�k = argmin
�

kB�1
0 yk�1 � sk�1k22, B0 = �I

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Initialization Method II

HSk = Yk

S
T
k HSk = S

T
k Yk

Consider a quadratic function

L(w) = 1

2
w

T
Hw + g

T
w r2L(w) = H

We have

Therefore

Erway et al. (2018). “Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations,” ArXiv e-prints.



Initialization Method II

S
T
k HSk � �kS

T
k Sk = S

T
k  kMk 

T
k Sk

 k =
⇥
B0Sk Yk

⇤
, Mk =


�ST

k B0Sk �Lk

�LT
k Dk

��1

Bk = B0 + kMk 
T
k

Since

B0 = �kI

We have

Secant Condition

BkS
T
k = Yk



Initialization Method II
S
T
k HSk � �kS

T
k Sk = S

T
k  kMk 

T
k Sk

(Lk +Dk + LT
k )z = �ST

k Skz

�k 2 (0,�min)

General Eigen-Value Problem

Upper bound for initial value to avoid false curvature information



Initialization Method III
Bk = B0 + kMk 

T
kB0 = �kI

S
T
k HSk � �kS

T
k Sk = S

T
k  kMk 

T
k Sk

 k =
⇥
B0Sk Yk

⇤
, Mk =


�ST

k B0Sk �Lk

�LT
k Dk

��1
Note that compact representation matrices contains �k



Initialization Method III

�k 2 (0,�min)

A⇤z = �B⇤z

A⇤ = Lk+Dk+LT
k � ST

k YkD̃Y T
k Sk� �2

k�1(S
T
k SkÃST

k Sk),

B⇤ = ST
k Sk + ST

k SkB̃Y T
k ST

k + ST
k YkB̃

TST
k Sk.

General Eigen-Value Problem

Upper bound for initial values to avoid false curvature information



Applications in  
Deep Learning



X = {x1, x2, . . . , xi, . . . , xN}

T = {t1, t2, . . . , ti, . . . , tN}

Supervised Learning
Features

Labels

� : X ! T



Input: Model 
(Predictor) Output: x y

�(x;w)
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Supervised Learning



Input conv1 conv2pool1 pool2 hidden4 output

Convolutional Neural Network

n = 413, 080

�(x;w)

Lecun et al. (1998) “Gradient-basedlearning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324.



t =
⇥
0, 0, 1, 0, . . . , 0

⇤

y =
⇥
0, 0, 0.97, 0.03, . . . , 0

⇤

Loss Function

Cross-entropy

Empirical Risk

L(w) = 1

N

NX

i=1

`(ti,�(xi, w))

`(t, y) = �t. log(y)� (1� t). log(1� y)

Target

Output



Multi-Batch L-BFGS
Shuffled Data Shuffled Data

OkOk�1

Ok Ok+1

Ok+1 Ok+2

Sk

Sk+1

Sk+2

Ok = Sk \ Sk+1

Berahas et al. (2016). “A multi-batch L-BFGS method for machine learning,” in Advances in Neural Information Processing Systems 29, pp. 1055–1063.



Computing gradients
OkOk�1

Ok Ok+1

Sk

Sk+1

Ok = Sk \ Sk+1

gk = rL(wk)
(Sk) =

1

|Sk|
X

i2Jk

rLi(wk)

yk = rL(wk+1)
(Ok) �rL(wk)

(Ok)

Berahas et al. (2016). “A multi-batch L-BFGS method for machine learning,” in Advances in Neural Information Processing Systems 29, pp. 1055–1063.



Experiment



Trust-Region Algorithm



Results - Loss

Full Stochastic Full Stochastic



Results - Accuracy

Full Stochastic Full Stochastic



Results - Training Time

Full Stochastic Full Stochastic
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