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Introduction,
Problem Statement
and Motivations



Unconstrained
Optimization Problem



Optimization Algorithms

Stochastic Batch
gradient.method gradient method

noise reduction methods

second-order methods

Stochastic Batch
Newton method Newton method

Bottou et al., (2016) Optimization methods for large-scale machine learning, print arXiv:1606.04838



Optimization Algorithms

1. Start from a random point wo

2. Repeat each iteration, k =0,1,2,...,

3. Choose a search direction Pk
4. Choose a step size &y
5. Update parameters wg41 < Wi + QiPk

6. Until |VL| < ¢€



Properties of Objective Function

. A
min L(w) = E li(
wER™
e n and N are both large in modern applications.

® L(w) is a non-convex and nonlinear function.
e V-L(w) is ill-conditioned.

® Computing full gradient, V L is expensive.

® Computing Hessian, V2L is not practical.



Stochastic Gradient Decent

1. Sample indices Sp C {1,2,...,N}

2. Compute stochastic (subsampled) gradient

1
VL (wy) ~ VL(wy) S 2 S > Vei(wy)

3. Assign a learning rate Ok

4. Update parameters using pr. = —Vﬁ(wk)(sw

WE++1 < WE — oszL(wk)(Sk)

H. Robbins, D. Siegmund. (1971). "A convergence theorem for non negative almost supermartingales and some applications”.
Optimizing methods in statistics.



Advantages of SGD

e SGD algorithms are very easy to implement.
e SGD requires only computing the gradient.

e SGD has a low cost-per-iteration.

Bottou et al., (2016) Optimization methods for large-scale machine learning, print arXiv:1606.04838



Disadvantages of SGD

* \ery sensitive to the ill-conditioning problem and
scaling.

 Requires fine-tuning many hyper-parameters.
e Unlikely exhibit acceptable performance on first try.
e requires many trials and errors.

e Can stuck in a saddle-point instead of local
minimum.

e Sublinear and slow rate of convergence.

Bottou et al., (2016). Optimization methods for large-scale machine learning. print arXiv:1606.04838
J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Second-Order Methods

1. Sample indices S, C {1,2,..., N}

2. Compute stochastic (subsampled) gradient

1
VL(wy) =~ VL(wg) ) & ST Z Ve, (wy)

3. Compute Hessian

V2L(wy) = V2L(wy) o) & \Sk\ Z V2l (wy,)

1€ESE



Second-Order Methods

4. Compute Newton’s direction
2 —1
Pk — -V £(wk) Vﬁ(wk)
5. Find proper step length

o = min L(wg + apg)

6. Update parameters

Wh+1 < WE + OPk



Second-Order Methods
Advantages

* The rate of convergence is super-linear
(quadratic for Newton method).

* They are resilient to problem ill-conditioning.
 They involve less parameter tuning.

 They are less sensitive to the choice of hyper-
parameters.

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Second-Order Methods
Disadvantages

e Computing the Hessian matrix is very
expensive and requires massive storage.

e Computing the inverse of Hessian is not
practical.

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.
Bottou et al., (2016) Optimization methods for large-scale machine learning, print arXiv:1606.04838



Quasi-Newton Methods
1. Construct a low-rank approximation of Hessian

2. Find the search direction by Minimizing the
Quadratic Model of the objective function

| 1
pr = argmin Q(p) = gip+ =p’ Bip’



Quasi-Newton Matrices

® Symmetric
® Fasy and Fast Computation
® Satisfies Secant Condition

Bri1Sr = Yk

A
Sk — Wk+4+1 — Wk

[9)% é V£(wk+1> — Vﬁ(wk)



Broyden Fletcher Goldfarb Shanno.

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Broyden Fletcher Goldfarb Shanno.

1 1
By, sk, By Yk Vi »
s%Bksk & ygsk &

Bri+1 = By

Sk = Why1 — Wy
(9)% é V,C(@U]H_l) — Vﬁ(wk)

Bo = vl

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Quasi-Newton Methods
Advantages

 The rate of convergence is super-linear.
e They are resilient to problem ill-conditioning.
e The second derivative is not required.

e They only use the gradient information to
construct quasi-Newton matrices.

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Quasi-Newton Methods
disadvantages

* The cost of storing the gradient informations can
be expensive.

* The quasi-Newton matrix can be dense.

* The quasi-Newton matrix grow in size and rank
in large-scale problems.

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Limited-Memory BFGS

Limited Memory Storage

Sk = Sk—m --- Sk—1] Y= |Yk-m .- Yp—1]

L-BFGS Compact Representation

By, = By + VU, M, U;.
By = il

where

—STB,S. —L
Uy, = |BoSk Yi|, My = k Pk -

L, Dy
Sng = L+ D+ U




Limited-Memory
Quasi-Newton Methods

* Low rank approximation
 Small memory of recent gradients.
* | ow cost of computation of search direction.

* Linear or superlinear Convergence rate can be
achieved.

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Objectives

Lo = vid
B = By + \Ikok\IfZ

What is the best choice for initialization?



Overview on
Quasi-Newton
Optimization Strategies



Line Search Method

WV —V L (wg)

Quadratic model

Pk

| 1
pr = argmin Q(p) = gip + =p* Bp

T

if B}, is positive definite:
—1
Pk — Bk 9k

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Line Search Method

Wi

W11
W“ Dk

Wolte conditions
L(w + arpr) < L(wg) + C1OékV£(wk:)Tpk
V L(wy + Oékpk)Tpk > szf(wk)Tpk

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Trust Region Method

— arg min
pr = arg min Q(p)

s.t. |Iplle < g



Trust Region Method

Theorem. Let 0 be a positive constant. A vector p* is a global solution of the trust-region
subproblem if and only if ||p*||2 < § and there exists a unique ¢* > 0 such that B 4+ ¢*I is positive
semidefinite and

(B+o™I)p"=—g and o7(d —[[p7[]2) = 0.

Moreover, if B + ¢*1I is positive definite, then the global minimizer is unique.

6

J. J. Mor’e and D. C. Sorensen, (1984) Newton’s method, in Studies in Mathematics, Volume 24. Studies in Numerical Analysis, Math. Assoc., pp. 29-82.



L-BFGS Trust Region
Optimization Method



L-BFGS in Trust Region
By, = By + W, M, ¥

Eigen-decomposition

A+l 0
0 ’ykf

B, =P pr

Sherman-Morrison-Woodbury Formula

b S 1 sk — _
P = ——, [—7 — ‘I’k(T Mk : T ‘I’g‘lfk) 1‘1’;2” gk

T

T =y, + 0"

L. Adhikari et al. (2017) “Limited-memory trust-region methods for sparse relaxation,” in Proc.SPIE, vol. 10394.
Brust et al, (2017). “On solving L-SR1 trust-region subproblems,” Computational Optimization and Applications, vol. 66, pp. 245-266.



L-BFGS in Trust Region vs. Line-Search

Trust-Region Minimization Algorithm for Training
Responses (TRMInATR): The Rise of Machine
Learning Techniques

Jacob Rafati Omar DeGuchy Roummel F. Marcia
Electrical Engineering and Computer Science Applied Mathematics Applied Mathematics
University of California, Merced University of California, Merced  University of California, Merced
Merced, CA 95343 USA Merced, CA 95343 USA Merced, CA 95343 USA

26th European Signal Processing Conference, Rome, Italy. September 2018.



Proposed Methods for
Initialization of L-BFGS



Initialization Method |
By = vl
By = By + VU, M, U;.
Spectral estimate of Hessian
_ yg;1yk—1

1
Sp_1Yk—1

VE

Vi = arg m/yiﬂ |By 'yk—1 — sk—1ll3, Bo =71

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Initialization Method Il

Consider a quadratic function

1
L(w) = 5 "Hw+ g'w VL(w) =H

We have

HSk = Y.

Therefore

SEHS), = S; Y,

Erway et al. (2018). “Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations,” ArXiv e-prints.



Initialization Method Il

Since

By = By + Uy MW} By =l

—SI'ByS, —Li
— LT Dy

1
Uy, = |BoSk Y|, My =

Secant Condition

BiS, =Y

We have

SZHS;C — ’WCS?;S]{; — Sg\I/kMk\I/ZSk



Initialization Method Il

S,ZHS;C — ykS,fSk — Sg\Ikok\IfZSk

General Eigen-Value Problem

(Lk + D + LZ)Z — )\S,;FSkz

Upper bound for initial value to avoid false curvature information

Yk - (07 )\min)



Initialization Method il
By = il By = Bg + U M ¥}

S,ZHS;C — ykS,fSk — Sg\Ikok\I/ZSk

Note that compact representation matrices contains V&

—SI'ByS, —Li

Uy, = |BoSk Y|, My = ) Dy




Initialization Method Il

General Eigen-Value Problem

>k >k
Az = \B™z
Upper bound for initial values to avoid false curvature information

Yk - (07 )\min)

A* = Lp+Dy+LE— STY, DY,L'S;,— ~2_, (SE S, ASE S,
B* = S¢S, + SLS,BY!SE + Sy, BT SES,,.



Applications In
Deep Learning



Supervised Learning

Features X = {xq1,Zo,...,%;,..., TN}

Labels T:{il,tz,...,ii,...,t]\f}

b X =7



Supervised Learning

_ Model _

o(z; w)




Convolutional Neural Network

Input convi pooli conv2 pool2 hiddend4 output

@S

"L

d(x;w)
n =413, 080

Lecun et al. (1998) “Gradient-basedlearning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324.



Loss Function

Target t = [O, O, 1, O, .oy O:

output y =10, 0, 0.97, 003, ..., 0

Cross-entropy
((t,y) = —t.log(y) — (1 — 7). log(1 — y)

Empirical Risk

£lw) = 5 D Ults, (s, w)



Multi-Batch L-BFG

Or = Sk N Sk

Skr1

Sk12

Berahas et al. (2016). “A multi-batch L-BFGS method for machine learning,” in Advances in Neural Information Processing Systems 29, pp. 1055-1063.



Computing gradients

Or = Sk NSk

Berahas et al. (2016). “A multi-batch L-BFGS method for machine learning,” in Advances in Neural Information Processing Systems 29, pp. 1055-1063.



Experiment

Initialization Source Formula
Solve the optimization problem: .
L Yr_1Yk-1
Method 1 Y = arg min, ||Bo_1yk_1 — sk-1]/3 Tk = max {1’ St Uk—1 }
Mothod 11 Solve the generalized eigenvalue problem: [ max{1,090mim} if Amin > 0,
(Lk + Dy + L)z = ASF Sk 77 | Use Method T if Ay < 0.

Solve the generalized eigenvalue problem:

Method III

A*z = B*)\z

) max{1,0.9Anin} if Apin >0,
Tk Use Method I if Appin < 0.




Trust-Region Algorithm

Algorithm Limited-memory BFGS trust-region method.

Input: starting point wy, tolerance € > 0, dg, n < i
Choose initialization Method I, Method II, or Method I1I

for £k =0,1,2,... do
Compute g = VL(wy)
Compute v, to initialize By = v/
Vi < max{vyg, 1}
Compute W, and M,
Form B, orthonormal matrices
Compute search step pi by solving TR subproblem
Compute s = pr and yr = VL(wi + pr) — VL(wi)
if 5{yk > 0 then
Store {s,yx} in storage Si+1 and Yj4q
Discard {Sk—m,Yk—m} from storage if k > m
end if

pr = (L(wr) — L(wk + pr))/(Qr(0) — Qk(pr))

if pr > n then
W41 = Wk + Pk

else
Wg4+1 = Wk

end if

Update trust-region radius 0z

if ||g||2 < € or k reached to maximum episodes then
break

end if
end for




Results - Loss
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Accuracy (%)

Results - Accuracy
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Time (s)

Results - Training Time
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