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Machine Learning
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Reinforcement Learning

s

reward
R,

EthH (
S | Environment \

Reinforcement learning (RL) is learning how to map situations
(states) to agent’s decisions (actions) to maximize future
rewards (return) by interaction with an unknown environment.

Experience (s, a, r, s’) as Data.

Sutton and Barto (2017). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 2nd edition.



Generalization

Parameterized Value Function
Function Expectation of Return

Approximator (Game Scores)




Super-Human Success
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Mnih, et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540):529-533.



Failure In a simple task

Puddle World Task (Grid World with Maze)
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Boyan and Moore (1995). Generalization in reinforcement learning: Safely approximating the value function. NeurlPS.



Failure in a simple task

Puddle World Task (Grid World with Maze) *
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Optimal policy for two similar states can be very different.



Failure in a complex task
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Hierarchy in Human Behavior & Brain Structure




Hierarchical Reinforcement Learning




Empirical Risk Minimization
In Deep Learning and Deep RL



Optimization Algorithms

Stochastic Batch
gradient‘nethod gradient method

noise reduction methods

second-order methods

Stochastic Batch
Newton method Newton method

Bottou et al., (2016) Optimization methods for large-scale machine learning, print arXiv:1606.04838



Stochastic Gradient Decent
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H. Robbins, D. Siegmund. (1971). A convergence theorem for non negative almost supermartingales and some applications”. Optimizing methods in statistics.



Second-Order Methods
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Advantages:

* The rate of convergence is quadratic.

* They are resilient to problem ill-conditioning.

* They involve less parameter tuning.

* They are less sensitive to the choice of hyper-parameters.

Disadvantages:

e Computing the Hessian matrix is very expensive and requires massive storage.
e Computing the inverse of Hessian is not practical.



Reinforcement Learning
Algorithms



Reinforcement Learning

reward

R,
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We want to maximize expectation of return for each state

Gt = Rit1 +YRiyo + 7V Riys + ...

action
A,

and find the optimal action-selection policy
T = argmaXE[Gt\St — s}, Vs e S
7T

Sutton and Barto (2017). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 2nd edition.



Return

Return is the cumulative sum of a future rewards:

Gt = Rit1 +YRivo + 7V Riys + ...

v € (0, 1] is a discount factor

A+ at41
ORIOS SR OO

Tt Tt+1 rt+2



Policy Function

Policy Function: At each time step agent implements a
mapping from states to possible actions

T S—- A

a; = m(S¢)

St—l—l)
BNe o Wa NNe

Tt Tt+1 T't+2



Objective of RL

Finding an optimal policy that maximizes the expectation of
return

T = arg max 43[Gt|5t — 3}, Vs € S

T

St+1

OSSR CEO

Tt Tt+1 T't+2



Q-Function

State-Action Value Function (Q-Function) is the expected
return when starting from (s,a) and following a policy thereafter

g (s,a) = E; [Gt S =s5,A = a}

The optimal Q-Function is the maximum expected return.

q"(s,a) = max q,(s,a)

The optimal policy can be obtained from the optimal Q-Function

7" (s) = argmaxq” (s, a)



Markov Decision Process

(S, A, P,R,~)

S 1s a finite set of states
A is a finite set of actions

P(s',s,a) = Pr(Siy1 = §'|S; = s, Ay = a) is state-transition probability
R(s,a) is the expected reward

v € [0, 1] is the discount factor

A+ at41
ORIOS SR OO

Tt Tt+1 rt+2



Properties of Return and Value Function

The return has a recursive property

Gt = Riy1 +v(Riso + YReys +...)

Gy = Rip1 +7Gip

Therefore, there is a recursive property in value function

q(s,a) =E|Gy | Sy = s, A = q

Q(Saa) =K [Rt—l—l + 7G4 \ Sy = 8, A = a}

Q¢ At+1
CRIOROACELO

Tt Tt+1 T't+2




Bellman Optimality Equation

Necessary condition for optimality associated with dynamic
programming.

Bellman’s Optimality in Expectation form:

¢*(s,a) = E[r(s,a) +7quq*(s’,a') | St = s, A = q

43[7“(3, a) +ymaxq*(s’,a’) — ¢*(s,a) |s, a} =0, Vs,a
a’ N——

prediction

target

Bellman’s Optimality in MDP framework (Empirical form):

¢*(s,a) =7(s,a) +7» p(s'|s,a) maxq*(s', )

S



Value lteration

Algorithm Value Iteration

Initialize: ¢"(s,a) arbitrarily for all (s,a) € S x A.

repeat (for ever)
for all s € S do

¢ (s,a) « {R(s,a) +v >, p(s]s,a) maxy ¢'(s',a') }

7(s) < arg max, ¢'(s, a)
end for

until value function and policy is stable
return ¢*(s,a), V(s,a) e S x A
return 7*(s) = arg max, ¢*(s,a), VseS




RL Algorithms
Model-Free vs. Model-Based

value/policy

acting

planning direct
RL

model experience

\

model
learning

Sutton and Barto (2017). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 2nd edition.



RL Algorithms

FULL
BACKUPS
A
(a)
DYNAMIC (b)
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TEMPORAL-
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%
SAMPLE
BACKUPS
SHALLOW € > DEEP
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Arulkumaran et al. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26-38.



Temporal Difference

 Model free reinforcement learning algorithm, i.e. State-
transition probabillities or reward function are not available.

A combination of Monte Carlo method and Dynamic
Programming.

e A powerful computational cognitive neuroscience model of
learning in brain.

* Q-Learning and SARSA are two popular TD learning methods.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3:9-44.



Q-Learning

state action
S reward Qa

Environment

We can update our prediction of the return by computing the TD error

(s, 0) < q(s,0) + a7+ ymaxq(s’,a') - q(s,a) )

a

-—_——————
TD error
/) ( )
r+ymaxgq(s',a’) qis,a
a’ N——
—~ . .
target prediction

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3:9-44.



Q-Learning

Algorithm (-Learning: Off-Policy TD Learning

Input: policy 7 to be evaluated
Initialize: Q(s,a) arbitrarily for all s € S and a € A(s).

repeat (for each episode
initialize s
repeat (for each step of episode)
choose action a using policy derived by @ (e.g. e-greedy)

take action a, observe reward r and next state s’
Q(s,a) < Q(s,a) + alr + ymaxy Q(s',a') — Q(s, a)]
s+ &
until (s is terminal or reaching to max number of steps)
until (convergence or reaching to max number of episodes)

e-areedy (O, ¢) — {random action a € A ifrand() < e

arg max, Q(s, a) otherwise



Generalization

m Function state-action
Approximator Values




Optimization in Deep RL

state action
S reward Qa

Environment

min L(w) = ;; (r+ ymaxq(s', a’;w) — (s, a; w))’

D = {(s,a,s’,r)}is Agent’s Experiences Memory.

Sutton and Barto (2017). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 2nd edition.



Problem 1.
Learning Sparse Representations
In Reinforcement Learning



Divergence of Vanilla ANN

Generalization in Reinforcement Learning:
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Boyan and Moore (1995). Generalization in reinforcement learning: Safely approximating the value function. NeurlPS.



Sparse Representation

Generalization in Reinforcement

Learning: Successful Examples Using

Sparse Coarse Coding

Tiling 3
Continuous Tiling 4
2D state
4N O \
pace ~

\ Point in
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Four active
- tiles/features
~ overlap the point
_— and are used to

represent it

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding. NeurlPS.



Problem 1:
Learning Sparse Representation in RL

 Problem Statement: Generalization over similar states may
cause catastrophic interference that unable learning.

* Objective: A mechanism for pattern separation is required to
overcome catastrophic interference when learning highly
nonlinear value function.

* Hypothesis: Lateral inhibition mechanism in cortex produce
sparse conjunctive representation that helps avoiding
catastrophic interference while supporting generalization. This
mechanism might help overcoming the catastrophic interference
iIn RL tasks that use neural networks for value function.



Tasks: Puddle World
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Sparse Representation

TD Error (Sl

Q(s,0) ~ a(s,050) [ © @ @

ho
hidden layer %}

normalized distributed input

°
L,

kWTA bias

N AN

N S E W
output Q(s,a)

Learned Sparse State
Representation

Sensory Input




kK-Winners-Take-All

Hidden Layer

* Producing sparse representation in feedforward path, by letting the top k
active neurons to fire.

* Local smoothness (in apposed to global smoothness of regular NN)

* No need to solve any optimization problem.

O’Reilly, R. C. and Munakata, Y. (2001). Computational Explorations in Cognitive Neuroscience. MIT Press.




Architectures
Linear Regular NN KWTA NN

N S E W
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TD error: Puddle World

Linear Regular NN kWTA NN
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Jacob Rafati and David C. Noelle (2015). Lateral Inhibition Overcomes Limits of Temporal Difference Learning. In 37th Annual Cognitive Science Society Meeting, Pasadena, CA, USA.



Puddle World

Value Function
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Jacob Rafati and David C. Noelle (2015). Lateral Inhibition Overcomes Limits of Temporal Difference Learning. In 37th Annual Cognitive Science Society Meeting, Pasadena, CA, USA.



Puddle World
Regular NN  kWTA NN

Policy Function
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Policy map
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Jacob Rafati and David C. Noelle (2015). Lateral Inhibition Overcomes Limits of Temporal Difference Learning. In 37th Annual Cognitive Science Society Meeting, Pasadena, CA, USA.



MSE of Reward: Puddle World

Averaged over 20 simulations of each network type, these columns
display the mean squared deviation of accumulated reward from that of
optimal performance (Q Table Values). Error bars show one standard
error of the mean.
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Jacob Rafati and David C. Noelle (2015). Lateral Inhibition Overcomes Limits of Temporal Difference Learning. In 37th Annual Cognitive Science Society Meeting, Pasadena, CA, USA.



Task: Mountain Car

)
0, if s’ is terminal

r(s,a) = 4

\ —1, otherwise




Training performance : Mountain Car
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Jacob Rafati and David C. Noelle (2017). Sparse Coding of Learned State Representations in Reinforcement Learning. In Cognitive Computational Neuroscience Conference, New York City, NY.



Test time performance : Mountain Car
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Value Function : Mountain Car

Linear Regular NN kWTA NN
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Task: Acrobat Task

(O, if s’ is terminal
r(s,a) =

—1, otherwsise
\

A

The goal is reaching|the tip to this line
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Test time performance : Acrobat

Linear Regular NN kWTA NN
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Conclusions

e [nspired by the lateral inhibition that appears in cortical
areas, we implemented a state-action value function
approximator that utilizes a k-Winners-Take-All

mechanism.

e The simulation results demonstrate that a mechanism for
learning sparse conjunctive codes for the agent's sensory
state can help overcome learning problems observed
when using TD Learning with a value function

approximation.



Future Work

* Using sparse conjunctive representation of the agent's state
not only can help in the solving of the simple reinforcement
learning tasks, but it might also help improve the learning of
some large-scale tasks, too. In the future, we will extend this
work to the deep reinforcement learning framework.

e A deep CNN equipped with a k-Winners-Take-All
mechanism in the fully connected layers can also be used
for supervised learning. This is particularly interesting in
applications such as image recognition, when two images
look similar (they share similar features), but they belong to
different classes.
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Problem 2.
Learning Representations
In Model-Free
Hierarchical Reinforcement Learning



Sparse Feedback & Scalability

| |
Subgoals

Botvinick et al. (2009). Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition, 113(3).



Hierarchy in Human Behavior & Brain Structure




Problem 2:

Learning Representations in model-free HRL

Objective:
1. Learning to operate over different levels of temporal
abstraction.

2. Efficiently exploring the state-space while learning
reusable skills through intrinsic motivation.

3. Automatic Subgoal Discovery in large-scale tasks
with sparse delayed feedback within model-free HRL

framework.
4. Learning Representations in a unified framework.



4 Rooms Task

Room 2 Room 1

A

Room 3 Room 4



Hierarchical Reinforcement Learning
Subproblems

 Subproblem 1: Learning a meta-policy to choose a
proper subgoal.

* Subproblem 2: Developing skills through intrinsic
motivation learning.

 Subproblem 3: Automatic subgoal discovery.



Developing skills through
Intrinsic Motivation




Meta-controller/Controller Framework

»| Environment

exterinsic
reward

Meta-controller

subgoal| gt

intrinsic
reward T¢4+1

observation (state)
St

action
¢

Tt+1

action

Kulkarni et al. (2016). Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. NeurlPS.



Subproblems 1 and 2:
Integration of Temporal Abstraction and
Intrinsic Motivation Learning

gt gt+T+1
Meta-controller Meta-controller
Q(s,g; W) Q(s,g; W)
At+T

St+T+1

Controller Controller

q(s, g, a;w) q(s, g, a;w)

(St-I-T ’ gt)

Kulkarni et al. (2016). Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. NeurlPS.



Meta-controller/Controller Framework

Meta-controller’s loss function

LOV) £ By .6.5,)~, [(G+7max Q(su, g's W) = Qs, ;W) ]

g

Controller’s loss function

L(w) = 41(S,Q,CL,fF,S’)f\JDl [(7: T HzanQ(Sla g, a,/; w) - C](S, g, a, w))Q]

Kulkarni et al. (2016). Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. NeurlPS.



State-Goal Q Function

representation
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Reusing the skKkills

Room 2 Room 1

A

Room 3 Room 4



Reusing the skKkills




Reusing the skKkills




Reusing the skills




Reusing the skKkills




Reusing the skKkills




Subproblem 3.
Subgoal Discovery

TLLIPLLIATTLLIDLIY
O Q’.’.’0’.’0’.’.’.".’O’.’.’O’.’Q’.’.’Q
.’Q’Q’Q’Q’.’Q’.’..QOQ’.’.’C’Q’.’Q’Q’.’Q
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Simsek et al. (2005). Identifying useful subgoals in reinforcement learning by local graph partitioning. ICML.
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Goel, S. and Huber, M. (2003). Subgoal discovery for hierarchical reinforcement learning using learned policies. FLAIRS.

Machado et al. (2017). A Laplacian Frame- work for Option Discovery in Reinforcement Learning. ICML.



Subproblem 3.
Subgoal Discovery

e Discovering promising states to pursue, I.e.
finding subgoals set.

e Implementing subgoal discovery algorithm for
large-scale model free RL problem, i.e. without
access to environment models (e.g. state-
transition probabilities, reward function).

e Unsupervised learning on the Ilimited past
experience memory collected during intrinsic
motivation learning.



Subproblem 3.
Candidate Subgoals

e |t is close to a rewarding state.

* |t represents a set of states, at least some of
which tend to be along a state transition path to a
rewarding state.

Centroids of K-means clusters (e.g. rooms)
> Outliers as potential subgoals (e.g. key, box)

> Boundary of two clusters (e.g. doorway)



Unsupervised Subgoal Discovery

Algorithm 10 Unsupervised Subgoal Discovery Algorithm

for each e = (s,a,r,s") stored in D do
if experience e is an outlier (anomaly) then
Store s’ to the subgoals set G
Remove e from D
end if
end for
Fit a K-means Clustering Algorithm on D using previous centroids as initial points
Store the updated centroids to the subgoals set G



Rooms lask




Anomaly Detection

\n
Anomalous Subgoals
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K-Means Clustering
K =4




K-Means Clustering
K =6




K-Means Clustering
K =38




Mathematical Interpretations

Value of a state in RL:

o
Va(s) £E[ Y 2'rels, 7]
t=0

Value of a state in regards to the meta-controller’s value function

Vi(s) =~ Q(s,91) + WTlQ(.Ql;gQ) + WT“LTQQ(gg,gg) + ...

In tasks with sparse rewards, states within a cluster have similar values.



Unification of HRL Subproblems

* Implementing a model-free HRL framework that
makes it possible to integrate automatic subgoal
discovery, intrinsic motivation, and temporal

abstraction.

| earning subgoal-selection policy and action-
policy simultaneously.

* The unification element should only use agent’s
experience memory (trajectories).



Unified Model-Free HRL

Agent

Experience Memory

D

Subgoal Discovery
. Meta-Controller
| Controller

3 ,
| Environment




Neural Networks for Meta-controller and controller
Rooms Task

q(s, g, a; w)
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Results — 4-Rooms task
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The Role of Intrinsic Motivation In
Efficient Exploration of Rooms
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Neural Networks for Meta-controller and controller
Montezuma’s Revenge

Meta-Controller

F.C. Linear (Output)

Q(s, g; W)

F.C. Linear + ReLLU
256 hidden units

Conv + ReLU
32 (4 x 4) filters

Conv + ReLU
16 (8 x 8) filters

state
s (4 x84 x84)

Controller

F.C. Linear (Output)
q(s, g, a;w)

F.C. Linear + ReLU
256 hidden units
Conv + ReLU
32 (4 x 4) filters

Conv + ReLU
16 (8 x 8) filters

state

o (hBe 4 subgoal mask

g (1 x 84 x 84)




Computer Vision methods for finding “interesting”
Initial Subgoals for Intrinsic Motivation Learning

Original Edge Detection Bounding Box

7




Unsupervised Subgoal Discovery
for Montezuma’s Revenge

Random Walk Our Method
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Success in reaching subgoals %

Results for Montezuma’s Revenge
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Neural Correlates of
Unsupervised Subgoal Discovery

cortex

High

Activity Level
hippocampus Low

Strange et al. (2014). Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience, 15(10):655-669.
Chalmers et al. (2016). Computational properties of the hippocampus increase the efficiency of goal-directed foraging through hierarchical reinforcement learning. Frontiers in Computational Neuroscience, 10.



Conclusions

e We proposed and demonstrated a novel model-free HRL
method for subgoal discovery using unsupervised learning
over a small memory of experiences (trajectories) of the agent.

 When combined with an intrinsic motivation learning
mechanism, this method learns subgoals and skills together,
based on experiences in the environment.

* Intrinsic motivation learning provides efficient exploration
scheme in tasks with sparse rewards that leads to successful
subgoal discovery.

* We offered an HRL approach that does not require a model of
the environment, making it suitable for larger-scale
applications.



Future Work

* | earning Representations in model-based HRL in order to plan in
case the direct experience is expensive (e.g. autonomous driving)

e Combining model-free and model-based HRL and solving entire
game of Montezuma’s Revenge using model-based HRL.

e Implement Computational Cognitive Neuroscience model of the
model-free HRL framework.

e Empirical (fMRI, EEG) study on Neural correlates of unsupervised
subgoal discovery and unified model-free/model-based HRL.

e Study on phenomenological interpretations of HRL.

 Improving the subgoal Initialization with more advanced
computer vision algorithms such as attention-based vision.

Yoshimi, J. (2017). Modeling consciousness using cognitive maps. Mind and Matter, 15(1):29-47.
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Problem 3.
Trust-Region Optimization
Methods in Deep Learning



Supervised Learning

Features Labels
X ={z1,22,...,24,..., TN} T = {tl,tg,...,ti,...,tN}

Objective: Learning a mapping from data to labels,

X =T

Likelihood

input Model

d(x;w)




Loss Function

v = ¢(x4;w)
Yi; = p(Yij = Cjlzi;w)

Target Prediction
t=10, 0, 1, 0, ..., 0 y=1[0, 0, 0.97, 0.03,

Cross-Entropy Loss:
(t,y) = —t.log(y) — (1 —¢).1log(1 — y)

Empirical Risk

£w) = 5 3 4t 6(ai,w)



Empirical Risk Minimization

min L(w €
L:R" — R
e n and N are both large in modern applications.

® L(w) is a non-convex and nonlinear function.
e V-L(w) is ill-conditioned.

® Computing full gradient, V L is expensive.

® Computing Hessian, V2L is not practical.



Quasi-Newton Methods

Construct a low-rank update of Hessian
approximation with first-order gradient informations:

Find the search direction by Minimizing the
Quadratic Model of the objective function

| 1
pr = argmin Q(p) = gl p - szkaT
peR™




Secant Condition

® Symmetric
® Easy and Fast Computation
® Satisfy Secant Condition

Displacement Vector: Gradients Difference Vector:
A A
Sk = Wk41 — Wk yr = VL(wg+1) — VL(wg)

A Taylor expansion of the gradient difference will lead to

VL(wgy1) — VL(wgt1) = VL(wit1) (W1 — wi)

Quasi Newton matrices should satisfy Secant Condition

Bri15r = yYi



Quasi-Newton Methods

Advantages:

e The rate of convergence is super-linear.

* They are resilient to problem ill-conditioning.

e The second derivative, Hessian matrix, is not required.

* They only use the gradient information to construct quasi-Newton
matrices.

Disadvantages:
* The cost of storing the gradient informations can be expensive.
* The quasi-Newton matrix can be dense.

* The quasi-Newton matrix grow in size and rank in large-scale problems.

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Broyden Fletcher Goldfarb Shanno.

p
=
TN
- » “
e

“ ’ M ."
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Broyden (1970). The convergence of a class of double-rank minimization algorithms: general considerations. SIAM Journal of Applied Mathematics, 6(1):76— 90.
Fletcher (1970). A new approach to variable metric algorithms. The Computer Journal, 13(3):317-322.

Goldfarb (1970). A family of variable-metric methods derived by variational means. Mathematics of computation, 24(109):23-26.

Shanno (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of computation, 24(111):647-656.



Broyden Fletcher Goldfarb Shanno.

* Positive definite matrices.
e 2-rank updates.
* Quasi Newton matrices should satisfy Secant Condition Bk+18k = Yk

BFGS update formula:

1 1
T T
Biy1 = B — — ByskS, By + —=—YrVi

st Brs S

. DESk Y Sk
With an initial matrix:
By = il
Displacement Vector: Gradients Difference Vector:

Sk = Whe1 — Wk Yk = VL(wpg1) — VL(wi)

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Compact Representation

Limited Memory Storage, m most recent vectors
Sk — [Sk—m . Sk—l} Yk — [yk—m c . yk—l]

L-BFGS has a Compact Representation
Bi, = By + VU, M, VU,

where

—SI'BoS, —Lg
Uy, = |BoSk Yi|, M = kph "

~L, Dy

LDU decomposition

S;Y),, = Ly + Dy, + U,



Problem 3:
Optimization Methods in Deep Learning

Objective:

* Implementing fast and robust stochastic quasi-Newton
optimization in deep learning.

 Multi-batch Stochastic L-BFGS in Line Search strategy.

 Multi-Batch Stochastic L-BFGS in Trust-Region strategy.



Quasi-Newton Matrices

® Symmetric
® Easy and Fast Computation
® Satisfy Secant Condition

Displacement Vector: Gradients Difference Vector:
A A
Sk = Wk41 — Wk yr = VL(wg+1) — VL(wg)

A Taylor expansion of the gradient difference will lead to

VL(wgy1) — VL(wgt1) = VL(wit1) (W1 — wi)

Quasi Newton matrices should satisfy Secant Condition

Bri15r = yYi



Line Search Strategy

WV —V L (wg)

Quadratic model of objective function

Pk

. 1
P = argmin Qk(p) £ ggp + §pTkaT
pER™
if By, is positive definite:

pr = B g

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Line Search Strategy
Wi

WEg+1

Pk

Xk PE

Next we should find a proper step size by solving

Q= Mmin £(wk -+ Ozpk)

Instead we satisfy the sufficient decrease and curvature conditions known as

Wolfe conditions
L(wy + agpr) < L(wy) + cro. VL(wg) " py
VL(wg + axpr) ' pr > 2V f(wi) ! pr

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Line-search strategy

e Compute stochastic gradient

e Compute the quasi-Newton matrix, B}

e Compute the search direction, Px = Bk_lgk
e Compute step length using Wolfe Conditions

* Update parameters, wii1 < wi + appg



Trust-Region Srategy

— arg min
pr = arg min Q(p)

s.t. |Iplle < g



Optimality Conditions

Theorem.

A vector, p*, is a global solution for trust-region subproblem,

argmpin QA(p) s.t. ||p|l2 <4,

6

if and only if

(i) [[p"ll2 < 0
(ii) There exists a unique o™ > 0 such that

(iii) (B4 o0™"I)p* = —g, and
(iv) 07(0 = [[p*[[2) = 0O
Moreover, if B + o1 is positive definite, then

\V]
T

1
N
T

the global minimizer is unique.

J. J. Mor’e and D. C. Sorensen, (1984) Newton’s method, in Studies in Mathematics, Volume 24. Studies in Numerical Analysis, Math. Assoc., pp. 29-82.



Trust-Region strategy

Compute stochastic gradient

Compute the quasi-Newton matrix, B
Compute the search direction by solving TR subproblem

pi = argmin Qx(p) s.t. [pllz < 6y

Compute the ratio of actual reduction to prediction reduction
[,(wk) — [,(wk —I—pk)
—Qr(pk)

P =
Update TR radius, 0%

Update parameters, wi1 < wg + agpk



Solving Trust-region subproblem

Eigen-decomposition of B, = By + \Ikok\IJZ

A+~ 0
0 ’ykf

B, =P pr

Sherman-Morrison-Woodbury Formula gives a closed
form solution to optimal search direction

% ]‘ sk — —
Pr = ——¢ [—7 — ‘I’k(T Mk : T ‘I’g‘l’k) 1‘I’ﬂ gk,

T

o™ is the Lagrange multiplier, there are fast and accurate
methods to find it. (See Brust et al (2017).)

T =y, + 0"

L. Adhikari et al. (2017) “Limited-memory trust-region methods for sparse relaxation,” in Proc.SPIE, vol. 10394.
Brust et al, (2017). “On solving L-SR1 trust-region subproblems,” Computational Optimization and Applications, vol. 66, pp. 245-266.



Multi-Batch L-BFGS

Ok = Ji N Jr+1

Jr+1

Berahas et al. (2016). “A multi-batch L-BFGS method for machine learning,” in Advances in Neural Information Processing Systems 29, pp. 1055-1063.



Computing gradients

Or = Sk NSk

Berahas et al. (2016). “A multi-batch L-BFGS method for machine learning,” in Advances in Neural Information Processing Systems 29, pp. 1055-1063.



Experiment on MNIST

q

?9994993%940 4

hidden4 output

pool2

3L

pooli

conv1

Input

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.



Trust-region vs Line-Search
Training Time - MNIST

loop time for 200 iterations

—f¢— line-search m =5
3500 7 ' trust-region m =5
—f¢— line-search m =10
3000 - —fe— trust-region m =10
—fe— line-search m =15
—fe— trust-region m =15
2500 A line-search m =20
—fe— trust-region m =20
T l
E 2000
1500 -
1000 -
000 A

2 4 6 8 10 12
number of multi batch

Rafati et al. (2018). Trust-Region Minimization Algorithm for Training Responses. In 26th European Signal Processing Conference, Rome, Italy.



Trust-region vs Line-Search
Training/Test Loss - MNIST

2.9 A
| line-search m =20 — full batch — (train loss)
\ line-search m =20 — full batch — (test loss)
trust-region m =20 — full batch — (train loss)
2.0 | trust-region m =20 — full batch — (test loss)
|
1.5 1
<
1.0 -
0.5
0.0
0 25 50 75 100 125 150 175 200
1terations

Rafati et al. (2018). Trust-Region Minimization Algorithm for Training Responses. In 26th European Signal Processing Conference, Rome, Italy.



Trust-region vs Line-Search
Training/Test Accuracy - MNIST

1.0
0.8
= 0.6 -
=
=
S
&
0.4 -
line-search m =20 — full batch — (train accuracy)
0.2 1 line-search m =20 — full batch — (test accuracy)
trust-region m =20 — full batch — (train accuracy)
i trust-region m =20 — full batch — (test accuracy)

0 25 50 75 100 125 150 175 200
iterations

Rafati et al. (2018). Trust-Region Minimization Algorithm for Training Responses. In 26th European Signal Processing Conference, Rome, Italy.



Initialization Methods for L-BFGS

By = vl + U, M, V7

How can we improve the performance by choosing a
proper initialization

Bo=7vgl, v >0



Initialization Method |

Bo =, >0

Method | is used In literature. This method finds the best
initial positive matrix that best represent the Hessian, i.e.
spectral estimate of Hessian.

T
N Y_1Yk—1
k:T
Sp_1Yk—1

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Initialization Methods Il lII

For a quadratic function,

1
L(w) = §wTHw + g w

We have

ViL(w)=H

Therefore H satisfies the Secant Equations

STHS), = S;Ys

Erway et al. (2018). “Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations,” ArXiv e-prints.



Initialization Methods Il lII

Consider the compact representation of L-BFGS

By — vl = U, M, V3

We should bound Yk in order to avoid a false curvature
condition in W, M, UL

By solving a general Eigenvalue problem
Az = \Bz

Yk < )\min

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.



Initialization Method li

Bo=vl, v >0

The general Eigenvalue problem
(L + Dy, + L. )z = AS} Sy.2
LDU decomposition

SLY,, = Ly, + Dy, + U,

Choose a positive value less than the smallest eigenvalue
Ve < )\min

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.



Initialization Method il

By = vil + VY, M, U,
—&S; Sk —Lk -
—LT D,

Uy = Sk Y|, My=

The general Eigenvalue problem considering nonlinearity
A"z = A\B*z
A* = Lp+Dyp+LE— SIvi,DY, L' S, — 2 (ST SLASES,),
B* = SESy, + SISy BY,' ST + S{Y,, BT STS,.

Choose a positive value less than the smallest eigenvalue
T < >\min

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.



Experiment on MNIST

Initialization Source Formula

Solve the optimization problem:

o . yg_lyk—l }
Method 1 Y = arg min, HB()_lyk.—l — sp_1])? Ve = max {1, g
Mothod Tt Solve the generalized eigenvalue problem: ) Jmax{l, 090} if Ay > 0,
(Lk + Dy + L{)z = AS] Skz 7 Use Method T if Agnin < 0.
Mothod 111 Solve the generalized eigenvalue problem: - Jmax 1,090} if Aysy > 0.
A"z =B Az Tk | Use Method 1 if Appin < 0.
Input convi pooli conv2 pool2 hidden4 output

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.



Training/Test Loss
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Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.
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Accuracy (%)

Training/Test Accuracy
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Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.




Training Time
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Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.



Conclusions

e We proposed and demonstrated an optimization method based
on the limited memory quasi-Newton method known as L-BFGS
as an alternative to the gradient descent methods typically used
to train deep neural networks.

e We considered both line-search and trust-region frameworks.
Trust-region is much faster than line-search since it doesn’t
require satisfying the sufficient decrease and curvature conditions.

e Trust-region radius can shrink or expand and is more flexible In
choosing alternative search direction since when the secant
condition doesn’t satisfy.

 We investigated three methods for initializing L-BFGS matrices in
a trust-region optimization framework in order to avoid false
curvature conditions. The proposed methods require solving a
cheap general eigenvalue problems and offer upper bounds for
initial values.



Future Work

e The true Hessian Is indefinite, and using
indefinite quasi-Newton matrices, like
Symmetric Rank 1 (SR1), or Full Broyden
Class (FBC) within trust-region methods
might lead to better convergence properties.
We will study these methods in a future work.

e \We will examine these optimization methods
on larger deep learning problems, such as
iImage recognition, healthcare, etc.
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e Jacob Rafati, and Roummel F. Marcia (2018). Improving L-
BFGS Initialization For Trust-Region Methods In Deep
Learning. In 17th IEEE International Conference on
Machine Learning and Applications (ICMLA 2018),
Orlando, Florida.



Problem 4.
Quasi-Newton Optimization in
Deep RL



Generalization
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Empirical Risk Minimization in Deep RL
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Sutton and Barto (2017). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 2nd edition.



Computing gradients
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To efficiently compute gradient and gradient differences,
we can reuse the previous iteration’s gradient
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Line Search Method
mwkﬂ -

Search step, the minimizer of quadratic model
—1

There is a formula to update inverse of BFGS matrices, H; = Bk_1
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Instead we satisfy the sufficient decrease and curvature conditions known as

Wolfe conditions
L(wy, + agpr) < L(wy) + crar VL (w ) pr
V L(wy + Oékpk)Tpk > CQVf(wk)Tpk

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



L-BFGS Two-Loop Recursion

Algorithm L-BFGS two-loop recursion.
q < gr = VL(wy)
fori:=k—1,....k—m do

T

y = ST,
qQ+q-— ;Y
end for
I' < H()q

fori:=k—1,....k—m do
=

yfsz-
I'(—I"|‘SZ'(&Z'—,B)
end for

return —r = _Hkgk

Computational time is dmn.



Convergence Analysis

Theorem. Under these assumptions:
L(w) is strongly convex, and twice differentiable.

Yw, 3N, A > 0 such that NI < V?L(w)L < AI, i.e. Hessian is bounded.
Yw, In > 0 such that ||[VL(w)||* < n?, i.e. Gradient does not explode.
N AN > 0 such that NI < H, < A'I.

If we bound the step size, o <
for loss

S We can compute an upper-bound

L(wy) — Lw*) < (1 =2aIN)[L(wy) — L(w*)]

a2A/2An2
AN\

+[1 — (1 = 2aAN)*]

I.e. the loss function will converge to a neighborhood of the optimal loss.

Jacob Rafati, and Roummel F. Marcia (2019). Quasi-Newton Optimization in Deep Q-Learning for Playing ATARI Games. arXiv e-print (arXiv:1811.02693).



Value Optimality

Theorem.

If o satisfies

2
‘1 — CY]CVQZH;CVQ]C + %VQZHkszkaV,Ck < 1,

then

1Qk41 — Qoo < [|Qr — Q7|cc-

By applying another condition on step size,
the value function theoretically converges to optimal values.

Jacob Rafati, and Roummel F. Marcia (2019). Quasi-Newton Optimization in Deep Q-Learning for Playing ATARI Games. arXiv e-print (arXiv:1811.02693).



Experiments - ATARI 2600
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We used one NVIDIA Tesla K40 GPU with 12GB GDDR5 RAM on MERCED clusters.
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Training Time for different batch
and different L-BFGS memory
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Training Time — L-BFGS vs SGD

Method BR BO EO Q*B SQ SI
SGD 4 2 8 8 8 1
Our method 4 2 4 2 1 1

Cost of Algorithm  (L/b)(z2bn +4mn) L (fz | 4fm)
Cost of DQN  (L,/f)(bsn) Ls ‘b,  bbs ’
, L
For same number of QQ-learning steps, 7= 1

Computation time of our algorithm 0.63

Computation time of SGD algorithm

Jacob Rafati, and Roummel F. Marcia (2019). Deep Reinforcement Learning via L-BFGS Optimization. arXiv e-print (arXiv:1811.02693).



(zame Scores

Max Scores for different batch
and different L-BFGS memory
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Best Scores

Method BR BO EO Q*B SQ SI

Random 354 1.2 0 157 110 179
Human 7456 31 368 18900 28010 3690

Sarsa (Bellemare et al., 2013) 996 5.2 129 614 665 271
Contingency (Bellemare et al., 2012) 1743 6 159 960 723 268
HNeat Pixel (Hausknecht et al., 2014) 1332 4 91 1325 800 1145
DQN (Mnih et al., 2013) 4092 168 470 1952 1705 581
TRPO, Single path (Schulman et al., 2015) | 1425 10 534 1973 1908 568
TRPO, Vine (Schulman et al., 2015) 859 34 431 7732 7788 450
SGD 804 13 2 1325 420 735

Our method 1380 18 49 1525 600 955

Bellemare et al. (2012). Investigating contingency awareness using ATARI 2600 games. AAAI.

Bellemare et al. (2013). The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279.
Hausknecht et al. (2014). A neuroevolution approach to general ATARI game playing. IEEE Transactions on Computational Intelligence and Al in Games, 6(4):355-366.
Schulman et al. (2015). Trust region policy optimization. ICML.

Mnih, et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540):529-533.

Jacob Rafati, and Roummel F. Marcia (2019). Deep Reinforcement Learning via L-BFGS Optimization. arXiv e-print (arXiv:1811.02693)



Conclusions

e We proposed and implemented a novel optimization
method based on line search limited-memory BFGS for
deep reinforcement learning framework.

* Due to the nonconvex and nonlinear loss function in deep
reinforcement learning, our numerical experiments show
that using the curvature information in computing the
search direction leads to a more robust convergence.

e Our proposed deep L-BFGS Q-Learning method is
designed to be efficient for parallel computations in GPU.

 Our method is much faster than the existing methods in
the literature, and it is memory efficient since it does not
need to store a large experience replay memory.



Future Work

* We will consider the optimization methods
based on trust-region methods.

e We will study methods based on indefinite
quasi-Newton, like SR1 and Full Broyden

Class.

e We will study the Hessian-free optimization
methods for model-free RL within conjugate
gradient framework.



Publications

e Jacob Rafati, and Roummel F. Marcia (2019). Deep
Reinforcement Learning via L-BFGS Optimization. arXiv e-
print (arXiv:1811.02693).



Concluding Remarks



Main Contributions

* In my Ph.D. dissertation, | have investigated biologically inspired
techniques for learning useful representations for model-free
reinforcement learning, as well as numerical optimization methods
for improving learning.

 Learning Sparse Representations in RL: | have implemented
efficient algorithms that incorporate a kind of lateral inhibition into
artificial neural network layers, driving these machine learning
systems to produce sparse conjunctive internal representations.

* Learning Representations in Model-Free HRL: | have
iImplemented a novel model-free method for subgoal discovery
using incremental unsupervised learning over a small memory of
the most recent experiences of the agent. When combined with
an intrinsic motivation learning mechanism, and temporal
abstraction, this method learns subgoals and skills together,
based on experiences in the environment.



Main Contributions

* Optimization Methods in Deep RL: | have contributed to the
design of an efficient optimization method, based on the L-BFGS
quasi-Newton method within line search strategy, offering it as an
alternative to SGD methods.

* Quasi-Newton Optimization in Deep Learning: | have
implemented efficient algorithms based on L-BFGS optimization
method suitable for general deep learning applications to improve
the quality of representation learning, as well as convergence
properties. | have implemented L-BFGS optimization under both
rust-region and line-search frameworks, and | have produced
evidence that this approach is efficient for deep learning problems
such as classification and regression from big data.

 Improving L-BFGS Initialization for trust-region methods: |
have explored various initialization methods for the L-BFGS
matrices, within a trust-region framework.



Future Work

 Learning Representations in Model-Based RL: In model-based approach,
the agent can incorporate planning into learning process by learning a model
of the environment. | will study methods for learning representations of the
agent's state within model-based reinforcement learning framework.

e Model selection in RL: | will study different families of function approximators

for the value function, and investigate their effects on learning representations
of the agent's state.

* Formal Convergence and Optimality Analysis: Proofs on effectiveness of
the proposed methods in this dissertation (as well as majority of the deep
learning and the deep RL literature) rely on empirical results on some
numerical simulations, which are very time consuming. | will attempt to study
formal convergence analysis in order to compute upper-bounds, and lower-
bounds of each proposed method in order to analyze the limits and power of
each method.

* Real world applications: | will investigate the effectiveness of the proposed
methods on real-world applications such as robotics, autonomous driving, etc.
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