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Introduction



Machine Learning
Supervised 

Learning
Unsupervised 

Learning
Reinforcement 

Learning

Input Label

duck

dog

cat

No label is given! No input or label Data is given! 
RL agent should collect its data. 

Input Data

?



Reinforcement Learning

Reinforcement learning (RL) is learning how to map situations 
(states) to agent’s decisions (actions) to maximize future 
rewards (return) by interaction with an unknown environment. 

Experience (s, a, r, s’) as Data.

Sutton and Barto (2017). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 2nd edition.
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Expectation of Return 
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Generalization

ws q(s, ai;w)



Super-Human Success

Mnih, et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540):529–533.



Failure in a simple task

Hidden Layer

N S E W

Boyan and Moore (1995). Generalization in reinforcement learning: Safely approximating the value function. NeurIPS.

s = (x, y)

q(s, a;w)



Failure in a simple task

s1s2

Optimal policy for two similar states can be very different.



Failure in a complex task

Mnih, et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540):529–533.



Complex 
Task

Simple 
Tasks

Major Goals Minor Goals Actions

Hierarchy in Human Behavior & Brain Structure



Hierarchical Reinforcement Learning



min
w2Rn

L(w) , 1

N

NX

i=1

`i(w)

L : Rn ! R

Empirical Risk Minimization 
in Deep Learning and Deep RL



Optimization Algorithms

Bottou et al., (2016) Optimization methods for large-scale machine learning, print arXiv:1606.04838



Stochastic Gradient Decent

H. Robbins, D. Siegmund. (1971). ”A convergence theorem for non negative almost supermartingales and some applications”. Optimizing methods in statistics. 

• Very sensitive to choice of learning rate.


• Very sensitive to the ill-conditioning problem and scaling.


• Requires fine-tuning many hyper-parameters.


• Can stuck in a saddle-point instead of local minimum.


• Sublinear and slow rate of convergence.



Second-Order Methods

Optimal Point
Advantages:

• The rate of convergence is quadratic.

• They are resilient to problem ill-conditioning. 

• They involve less parameter tuning. 

• They are less sensitive to the choice of hyper-parameters.

Disadvantages:

• Computing the Hessian matrix is very expensive and requires massive storage.

• Computing the inverse of Hessian is not practical.  



Reinforcement Learning 
Algorithms



Reinforcement Learning

Gt = Rt+1 + �Rt+2 + �2Rt+3 + . . .

⇡⇤ = argmax
⇡

E
⇥
Gt|St = s

⇤
, 8s 2 S

Sutton and Barto (2017). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 2nd edition.

We want to maximize expectation of return for each state

and find the optimal action-selection policy



Return
Return is the cumulative sum of a future rewards: 

st st+1

rt+1rt

at
s0 sT

Gt = Rt+1 + �Rt+2 + �2Rt+3 + . . .

� 2 (0, 1] is a discount factor

st+2

at+1

rt+2



Policy Function
Policy Function: At each time step agent implements a 
mapping from states to possible actions

⇡ : S ! A

at = ⇡(st)

st st+1

rt+1rt

s0 sTst+2

rt+2

⇡(st) ⇡(st+1)



Objective of RL
Finding an optimal policy that maximizes the expectation of  
return

⇡⇤ = argmax
⇡

E
⇥
Gt|St = s

⇤
, 8s 2 S

st st+1

rt+1rt

s0 sTst+2

rt+2

⇡⇤(st) ⇡⇤(st+1)



Q-Function
State-Action Value Function (Q-Function) is the expected 
return when starting from (s,a) and following a policy thereafter 

The optimal Q-Function is the maximum expected return.

q⇡(s, a) = E⇡

⇥
Gt | St = s,At = a

⇤

q⇤(s, a) = max
⇡

q⇡(s, a)

⇡⇤(s) = argmax
a

q⇤(s, a)

The optimal policy can be obtained from the optimal Q-Function



Markov Decision Process
(S,A, P,R, �)

S is a finite set of states
A is a finite set of actions

P (s0, s, a) = Pr(St+1 = s0|St = s,At = a) is state-transition probability

R(s, a) is the expected reward

� 2 [0, 1] is the discount factor

st st+1

rt+1rt

at
s0 sTst+2

at+1

rt+2



Properties of Return and Value Function

Gt = Rt+1 + �Gt+1

st st+1

rt+1rt

at
s0 sTst+2

at+1

rt+2

q(s, a) = E
⇥
Gt | St = s,At = a

⇤

q(s, a) = E
⇥
Rt+1 + �Gt+1 | St = s,At = a

⇤

The return has a recursive property

Therefore, there is a recursive property in value function

Gt = Rt+1 + �
�
Rt+2 + �Rt+3 + . . .

�



Bellman Optimality Equation

q⇤(s, a) = r(s, a) + �
X

s0

p(s0|s, a)max
a0

q⇤(s0, a0)

Necessary condition for optimality associated with dynamic 
programming.

Bellman’s Optimality in Expectation form:

Bellman’s Optimality in MDP framework (Empirical form):

q⇤(s, a) = E
⇥
r(s, a) + �max

a0
q⇤(s0, a0) | St = s,At = a

⇤

E
h
r(s, a) + �max

a0
q⇤(s0, a0)

| {z }
target

� q⇤(s, a)| {z }
prediction

���s, a
i
= 0, 8 s, a



Value Iteration



RL Algorithms 
Model-Free vs. Model-Based

Sutton and Barto (2017). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 2nd edition.



RL Algorithms

Arulkumaran et al. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38.



Temporal Difference
• Model free reinforcement learning algorithm, i.e. State-

transition probabilities or reward function are not available.


• A combination of Monte Carlo method and Dynamic 
Programming.


• A powerful computational cognitive neuroscience model of 
learning in brain. 


• Q-Learning and SARSA are two popular TD learning methods.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3:9–44.



Q-Learning
Agent

Environment

state
reward

action
s

r

s0

a

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3:9–44.

We can update our prediction of the return by computing the TD error

q(s, a)| {z }
prediction

q(s, a) q(s, a) + ↵
⇣
r + �max

a0
q(s0, a0)� q(s, a)

| {z }
TD error

⌘

r + �max
a0

q(s0, a0)
| {z }

target



Q-Learning

✏-greedy(Q, ✏) =

(
random action a 2 A if rand() < ✏

argmaxa Q(s, a) otherwise



State Function 
Approximator

state-action 
Values

...

...
q(s, ai;w)

Generalization

w q(s, a;w)s



Agent

Environment

state
reward

action
s

r

s0

a

 Optimization in Deep RL

Sutton and Barto (2017). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 2nd edition.

min
w2R

L(w) , 1

N

X

e2D

�
r + �max

a0
q(s0, a0;w)� q(s, a;w)

�2

D = {(s, a, s0, r)} is Agent’s Experiences Memory.



Problem 1. 
Learning Sparse Representations 

in Reinforcement Learning



Divergence of Vanilla ANN

Hidden Layer

N S E W

s = (x, y)

q(s, a;w)

Boyan and Moore (1995). Generalization in reinforcement learning: Safely approximating the value function. NeurIPS.



Sparse Representation

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding. NeurIPS.



Problem 1: 
Learning Sparse Representation in RL

• Problem Statement: Generalization over similar states may 
cause catastrophic interference that unable learning.


• Objective: A mechanism for pattern separation is required to 
overcome catastrophic interference when learning highly 
nonlinear value function.


• Hypothesis: Lateral inhibition mechanism in cortex produce 
sparse conjunctive representation that helps avoiding 
catastrophic interference while supporting generalization. This 
mechanism might help overcoming the catastrophic interference 
in RL tasks that use neural networks for value function.



Tasks: Puddle World
r(s, a) =

8
>>><

>>>:

0, if s0 is terminal

�400d, if s0 is inside puddle

�2, if agent bumps the wall

�1, otherwise



Sparse Representation

Sensory Input

output	Q(s,a)
N S E W

Learned Sparse State 
Representation
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ET
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T

kw
ta

 
ou

tp
ut

k-Winners-Take-All

Hidden Layer

O’Reilly, R. C. and Munakata, Y. (2001). Computational Explorations in Cognitive Neuroscience. MIT Press.

• Producing sparse representation in feedforward path, by letting the top k 
active neurons to fire.


• Local smoothness (in apposed to global smoothness of regular NN)

• No need to solve any optimization problem.



Architectures

Sensory Input

output	Q(s,a)
N S E W

Sensory Input

Hidden Layer

output	Q(s,a)
N S E W

Sensory Input

Hidden Layer

output	Q(s,a)
N S E W

kWTA

Linear Regular NN kWTA NN



TD error: Puddle World

Linear Regular NN kWTA NN

Jacob Rafati and David C. Noelle (2015). Lateral Inhibition Overcomes Limits of Temporal Difference Learning. In 37th Annual Cognitive Science Society Meeting, Pasadena, CA, USA.



Value Function: Puddle World

Linear Regular NN kWTA NN

Jacob Rafati and David C. Noelle (2015). Lateral Inhibition Overcomes Limits of Temporal Difference Learning. In 37th Annual Cognitive Science Society Meeting, Pasadena, CA, USA.



Policy Function: Puddle World

Linear kWTA NNRegular NN

Jacob Rafati and David C. Noelle (2015). Lateral Inhibition Overcomes Limits of Temporal Difference Learning. In 37th Annual Cognitive Science Society Meeting, Pasadena, CA, USA.



MSE of Reward: Puddle World
Averaged over 20 simulations of each network type, these columns 
display the mean squared deviation of accumulated reward from that of 
optimal performance (Q Table Values). Error bars show one standard 
error of the mean. 
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Jacob Rafati and David C. Noelle (2015). Lateral Inhibition Overcomes Limits of Temporal Difference Learning. In 37th Annual Cognitive Science Society Meeting, Pasadena, CA, USA.



Task: Mountain Car
r(s, a) =

(
0, if s0 is terminal

�1, otherwise



Training performance : Mountain Car

Linear Regular NN kWTA NN

Jacob Rafati and David C. Noelle (2017). Sparse Coding of Learned State Representations in Reinforcement Learning. In Cognitive Computational Neuroscience Conference, New York City, NY.



Test time performance : Mountain Car

Linear Regular NN kWTA NN

Jacob Rafati and David C. Noelle (2017). Sparse Coding of Learned State Representations in Reinforcement Learning. In Cognitive Computational Neuroscience Conference, New York City, NY.



Value Function : Mountain Car

Linear Regular NN kWTA NN
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Jacob Rafati and David C. Noelle (2017). Sparse Coding of Learned State Representations in Reinforcement Learning. In Cognitive Computational Neuroscience Conference, New York City, NY.



Task: Acrobat Task
r(s, a) =

(
0, if s0 is terminal

�1, otherwise



Training performance : Acrobat

Linear Regular NN kWTA NN

Jacob Rafati and David C. Noelle (2017). Sparse Coding of Learned State Representations in Reinforcement Learning. In Cognitive Computational Neuroscience Conference, New York City, NY.



Test time performance : Acrobat

Linear Regular NN kWTA NN

Jacob Rafati and David C. Noelle (2017). Sparse Coding of Learned State Representations in Reinforcement Learning. In Cognitive Computational Neuroscience Conference, New York City, NY.



Conclusions

• Inspired by the lateral inhibition that appears in cortical 
areas, we implemented a state-action value function 
approximator that uti l izes a k-Winners-Take-All 
mechanism.


• The simulation results demonstrate that a mechanism for 
learning sparse conjunctive codes for the agent's sensory 
state can help overcome learning problems observed 
when using TD Learning with a value function 
approximation.



Future Work
• Using sparse conjunctive representation of the agent's state 

not only can help in the solving of the simple reinforcement 
learning tasks, but it might also help improve the learning of 
some large-scale tasks, too. In the future, we will extend this 
work to the deep reinforcement learning framework.


• A deep CNN equipped with a k-Winners-Take-All 
mechanism in the fully connected layers can also be used 
for supervised learning. This is  particularly interesting in 
applications such as image recognition, when two images 
look similar (they share similar features), but they belong to 
different classes.



Publications

• Jacob Rafati and David C. Noelle (2015). Lateral Inhibition 
Overcomes Limits of Temporal Difference Learning. In 
37th Annual Cognitive Science Society Meeting, 
Pasadena, CA, USA.


• Jacob Rafati and David C. Noelle (2017). Sparse Coding 
of Learned State Representations in Reinforcement 
Learning. In Cognitive Computational Neuroscience 
Conference, New York City, NY.



Problem 2. 
Learning Representations 

in Model-Free  
Hierarchical Reinforcement Learning



Sparse Feedback & Scalability

Subgoals

Botvinick et al. (2009). Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition, 113(3).



Complex 
Task

Simple 
Tasks

Major Goals Minor Goals Actions

Hierarchy in Human Behavior & Brain Structure



Problem 2: 
Learning Representations in model-free HRL

Objective: 

1. Learning to operate over different levels of temporal 

abstraction.

2. Efficiently exploring the state-space while learning 

reusable skills through intrinsic motivation.

3. Automatic Subgoal Discovery in large-scale tasks 

with sparse delayed feedback within model-free HRL 
framework.


4. Learning Representations in a unified framework.



Room 1Room 2

Room 3 Room 4

4 Rooms Task



Hierarchical Reinforcement Learning 
Subproblems

• Subproblem 1: Learning a meta-policy to choose a 
proper subgoal.


• Subproblem 2: Developing skills through intrinsic 
motivation learning.


• Subproblem 3: Automatic subgoal discovery.



Developing skills through 
Intrinsic Motivation



Meta-controller/Controller Framework

Kulkarni et al. (2016). Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. NeurIPS.



Subproblems 1 and 2:  
Integration of Temporal Abstraction and  

Intrinsic Motivation Learning

Kulkarni et al. (2016). Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. NeurIPS.



Meta-controller/Controller Framework

L(W) , E(s,g,G,st0 )⇠D2

⇥�
G+ �max

g0
Q(st0 , g

0;W)�Q(s, g;W)
�2⇤

Meta-controller’s loss function

Controller’s loss function

L(w) , E(s,g,a,r̃,s0)⇠D1

⇥�
r̃ + �max

a0
q(s0, g, a0;w)� q(s, g, a;w)

�2⇤

Kulkarni et al. (2016). Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. NeurIPS.
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State-Goal Q Function



Room 1Room 2

Room 3 Room 4
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Room-2

Reusing the skills

Lock
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Subproblem 3. 
Subgoal Discovery

Simsek et al. (2005). Identifying useful subgoals in reinforcement learning by local graph partitioning. ICML.

Goel, S. and Huber, M. (2003). Subgoal discovery for hierarchical reinforcement learning using learned policies. FLAIRS.

Machado et al. (2017). A Laplacian Frame- work for Option Discovery in Reinforcement Learning. ICML.



Subproblem 3. 
Subgoal Discovery

• Discovering promising states to pursue, i.e. 
finding subgoals set.


• Implementing subgoal discovery algorithm for 
large-scale model free RL problem, i.e. without 
access to environment models (e.g. state-
transition probabilities, reward function).


• Unsupervised learning on the limited past 
experience memory collected during intrinsic 
motivation learning.



Subproblem 3. 
Candidate Subgoals

• It is close to a rewarding state.


• It represents a set of states, at least some of 
which tend to be along a state transition path to a 
rewarding state.


Centroids of K-means clusters (e.g. rooms)

Outliers as potential subgoals (e.g. key, box)

Boundary of two clusters (e.g. doorway)



Unsupervised Subgoal Discovery



Rooms Task



Anomaly Detection



K-Means Clustering 
K = 4



K-Means Clustering 
K = 6



K-Means Clustering 
K = 8



Mathematical Interpretations

V (s) ⇡ Q(s, g1) + �T1Q(g1, g2) + �T1+T2Q(g2, g3) + . . .

V⇡(s) , E
⇥ TX

t=0

�trt|s,⇡
⇤

In tasks with sparse rewards, states within a cluster have similar values.

Value of a state in RL:

Value of a state in regards to the meta-controller’s value function



Unification of HRL Subproblems
• Implementing a model-free HRL framework that 

makes it possible to integrate automatic subgoal 
discovery, intrinsic motivation, and temporal 
abstraction. 


• Learning subgoal-selection policy and action-
policy simultaneously. 


• The unification element should only use agent’s 
experience memory (trajectories).



Unified Model-Free HRL
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Neural Networks for Meta-controller and controller 
Rooms Task



Results — 4-Rooms task
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The Role of Intrinsic Motivation in 
Efficient Exploration of Rooms
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Neural Networks for Meta-controller and controller 
Montezuma’s Revenge

Meta-Controller Controller



Computer Vision methods for finding “interesting”  
Initial Subgoals for Intrinsic Motivation Learning

Original Edge Detection Bounding Box



Unsupervised Subgoal Discovery 
for Montezuma’s Revenge

Random Walk Our Method



Results for Montezuma’s Revenge
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Neural Correlates of  
Unsupervised Subgoal Discovery

Strange et al. (2014). Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience, 15(10):655–669. 

Chalmers et al. (2016). Computational properties of the hippocampus increase the efficiency of goal-directed foraging through hierarchical reinforcement learning. Frontiers in Computational Neuroscience, 10.



Conclusions
• We proposed and demonstrated a novel model-free HRL 

method for subgoal discovery using unsupervised learning 
over a small memory of experiences (trajectories) of the agent. 


• When combined with an intrinsic motivation learning 
mechanism, this method learns subgoals and skills together, 
based on experiences in the environment. 


• Intrinsic motivation learning provides efficient exploration 
scheme in tasks with sparse rewards that leads to successful 
subgoal discovery.  


• We offered an HRL approach that does not require a model of 
the environment, making it suitable for larger-scale 
applications.



Future Work
• Learning Representations in model-based HRL in order to plan in 

case the direct experience is expensive (e.g. autonomous driving)


• Combining model-free and model-based HRL and solving entire 
game of Montezuma’s Revenge using model-based HRL.


• Implement Computational Cognitive Neuroscience model of the 
model-free HRL framework.


• Empirical (fMRI, EEG) study on Neural correlates of unsupervised 
subgoal discovery and unified model-free/model-based HRL. 


• Study on phenomenological interpretations of HRL.


• Improving the subgoal initialization with more advanced 
computer vision algorithms such as attention-based vision. 

Yoshimi, J. (2017). Modeling consciousness using cognitive maps. Mind and Matter, 15(1):29–47.
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• Jacob Rafati, and David C. Noelle (2019). Learning Representations in Model-
Free Hierarchical Reinforcement Learning. arXiv e-print (arXiv:1810.10096).



Problem 3. 
Trust-Region Optimization 
Methods in Deep Learning 



�(x;w)

0
1
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3
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9

0
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0.97
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...
0

Modelinput
Likelihood

X = {x1, x2, . . . , xi, . . . , xN} T = {t1, t2, . . . , ti, . . . , tN}
Features Labels

� : X ! T

Objective: Learning a mapping from data to labels,

Supervised Learning



t =
⇥
0, 0, 1, 0, . . . , 0

⇤
y =

⇥
0, 0, 0.97, 0.03, . . . , 0

⇤

Loss Function

Cross-Entropy Loss:

Empirical Risk

L(w) = 1

N

NX

i=1

`(ti,�(xi, w))

`(t, y) = �t. log(y)� (1� t). log(1� y)

Target Prediction

yij = p(yij = Cj |xi;w)

yi = �(xi;w)



•                  are both large in modern applications. 

•           is a non-convex and nonlinear function.  

•                is ill-conditioned. 

• Computing full gradient,        is expensive. 

• Computing Hessian,           is not practical.

n and N

L(w)

r2L(w)

r2L

rL

min
w2Rn

L(w) , 1

N

NX

i=1

`i(w)

L : Rn ! R

Empirical Risk Minimization



Quasi-Newton Methods

Construct a low-rank update of Hessian 
approximation with first-order gradient informations:


Find the search direction by Minimizing the 
Quadratic Model of the objective function

Bk ⇡ r2L(wk)

pk = argmin
p2Rn

Qk(p) , gTk p+
1

2
pTBkp

T



Secant Condition
•Symmetric 
•Easy and Fast Computation 
•Satisfy Secant Condition

Bk+1sk = yk

sk , wk+1 � wk yk , rL(wk+1)�rL(wk)

rL(wk+1)�rL(wk+1) ⇡ r2L(wk+1)(wk+1 � wk)
A Taylor expansion of the gradient difference will lead to

Displacement Vector: Gradients Difference Vector:

Quasi Newton matrices should satisfy Secant Condition



Quasi-Newton Methods
Advantages: 

• The rate of convergence is super-linear.


• They are resilient to problem ill-conditioning. 


• The second derivative, Hessian matrix, is not required.


• They only use the gradient information to construct quasi-Newton 
matrices.


Disadvantages: 

• The cost of storing the gradient informations can be expensive.


• The quasi-Newton matrix can be dense.


• The quasi-Newton matrix grow in size and rank in large-scale problems.

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Broyden Fletcher Goldfarb Shanno. 

Broyden (1970). The convergence of a class of double-rank minimization algorithms: general considerations. SIAM Journal of Applied Mathematics, 6(1):76– 90. 

Fletcher (1970). A new approach to variable metric algorithms. The Computer Journal, 13(3):317–322.

Goldfarb (1970). A family of variable-metric methods derived by variational means. Mathematics of computation, 24(109):23–26.

Shanno (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of computation, 24(111):647–656. 



Broyden Fletcher Goldfarb Shanno. 

Bk+1 = Bk � 1

sTkBksk
Bksks

T
kBk +

1

yTk sk
yky

T
k ,

B0 = �kI

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

BFGS update formula:

With an initial matrix:

• Positive definite matrices.


• 2-rank updates.


• Quasi Newton matrices should satisfy Secant Condition

sk , wk+1 � wk yk , rL(wk+1)�rL(wk)
Displacement Vector: Gradients Difference Vector:

Bk+1sk = yk



Compact Representation
Sk =

⇥
sk�m . . . sk�1

⇤
Yk =

⇥
yk�m . . . yk�1

⇤

 k =
⇥
B0Sk Yk

⇤
, Mk =


�ST

k B0Sk �Lk

�LT
k Dk

��1

ST
k Yk = Lk +Dk + Uk

Bk = B0 + kMk 
T
k

L-BFGS has a Compact Representation

where

Limited Memory Storage, m most recent vectors

LDU decomposition



Problem 3:  
Optimization Methods in Deep Learning

Objective: 

• Implementing fast and robust stochastic quasi-Newton 
optimization in deep learning.


• Multi-batch Stochastic L-BFGS in Line Search strategy.


• Multi-Batch Stochastic L-BFGS in Trust-Region strategy.



Quasi-Newton Matrices
•Symmetric 
•Easy and Fast Computation 
•Satisfy Secant Condition

Bk+1sk = yk

sk , wk+1 � wk yk , rL(wk+1)�rL(wk)

rL(wk+1)�rL(wk+1) ⇡ r2L(wk+1)(wk+1 � wk)
A Taylor expansion of the gradient difference will lead to

Displacement Vector: Gradients Difference Vector:

Quasi Newton matrices should satisfy Secant Condition



Line Search Strategy

pk

wk

Quadratic model of objective function

if Bk is positive definite:

pk = argmin
p2Rn

Qk(p) , gTk p+
1

2
pTBkp

T

pk = B�1
k gk

�rL(wk)

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.



Line Search Strategy

pk

wk
wk+1

↵kpk

Wolfe conditions

L(wk + ↵kpk)  L(wk) + c1↵krL(wk)
T pk

rL(wk + ↵kpk)
T pk � c2rf(wk)

T pk

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

↵k = min
↵

L(wk + ↵pk)

Next we should find a proper step size by solving

Instead we satisfy the sufficient decrease and curvature conditions known as



Line-search strategy
• Compute stochastic gradient 


• Compute the quasi-Newton matrix,  


• Compute the search direction,


• Compute step length using Wolfe Conditions


• Update parameters, 

pk = B�1
k gk

wk+1  wk + ↵kpk

Bk



Trust-Region Srategy

wk

�k

pk

Toint et al. (2000), Trust Region Methods, SIAM.

pk = arg min
p2Rn

Q(p)

s.t. kpk2  �k



Optimality Conditions

J. J. Mor´e and D. C. Sorensen, (1984) Newton’s method, in Studies in Mathematics, Volume 24. Studies in Numerical Analysis, Math. Assoc., pp. 29–82.

Theorem.

A vector, p⇤, is a global solution for trust-region subproblem,

argmin
p

Q(p) s.t. kpk2  �,

if and only if

(i) kp⇤k2  �

(ii) There exists a unique �⇤ � 0 such that

(iii) (B + �⇤I)p⇤ = �g, and

(iv) �⇤(� � kp⇤k2) = 0

Moreover, if B + �⇤I is positive definite, then

the global minimizer is unique.

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

Newton
step

Global 
minimum

Local 
minimum



Trust-Region strategy
Compute stochastic gradient 


Compute the quasi-Newton matrix,  


Compute the search direction by solving TR subproblem


Compute the ratio of actual reduction to prediction reduction


Update TR radius,  


Update parameters, 

Bk

pk = argmin
p

Qk(p) s.t. kpk2  �k

⇢k =
L(wk)� L(wk + pk)

�Qk(pk)

�k

wk+1  wk + ↵kpk



Solving Trust-region subproblem

L. Adhikari et al. (2017) “Limited-memory trust-region methods for sparse relaxation,” in Proc.SPIE, vol. 10394. 
Brust et al, (2017). “On solving L-SR1 trust-region subproblems,” Computational Optimization and Applications, vol. 66, pp. 245–266.

Bk = B0 + kMk 
T
kEigen-decomposition of

Bk = P


⇤+ �kI 0

0 �kI

�
PT

Sherman-Morrison-Woodbury Formula gives a closed 
form solution to optimal search direction

p⇤k = � 1

⌧⇤
⇥
I � k(⌧

⇤M�1
k + T

k k)
�1 T

k

⇤
gk,

⌧⇤ = �k + �⇤

  is the Lagrange multiplier, there are fast and accurate 
methods to find it. (See Brust et al (2017).)

�⇤



Multi-Batch L-BFGS

Shuffled Data Shuffled Data

OkOk�1

Ok Ok+1

Berahas et al. (2016). “A multi-batch L-BFGS method for machine learning,” in Advances in Neural Information Processing Systems 29, pp. 1055–1063.

Jk

Jk+1

Ok = Jk \ Jk+1



Computing gradients
OkOk�1

Ok Ok+1

Sk

Sk+1

Ok = Sk \ Sk+1

gk = rL(wk)
(Sk) =

1

|Sk|
X

i2Jk

rLi(wk)

yk = rL(wk+1)
(Ok) �rL(wk)

(Ok)

Berahas et al. (2016). “A multi-batch L-BFGS method for machine learning,” in Advances in Neural Information Processing Systems 29, pp. 1055–1063.



Experiment on MNIST

Input conv1 conv2pool1 pool2 hidden4 output

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.
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Rafati et al. (2018). Trust-Region Minimization Algorithm for Training Responses. In 26th European Signal Processing Conference, Rome, Italy.

Trust-region vs Line-Search 
Training Time - MNIST
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Rafati et al. (2018). Trust-Region Minimization Algorithm for Training Responses. In 26th European Signal Processing Conference, Rome, Italy.
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Rafati et al. (2018). Trust-Region Minimization Algorithm for Training Responses. In 26th European Signal Processing Conference, Rome, Italy.



Initialization Methods for L-BFGS

How can we improve the performance by choosing a 
proper initialization

B0 = �kI, �k > 0

�kI+

Bk = �kI + kMk 
T
k



Initialization Method I

�k =
yTk�1yk�1

sTk�1yk�1

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

Method I is used in literature. This method finds the best 
initial positive matrix that best represent the Hessian, i.e. 
spectral estimate of Hessian.

B0 = �kI, �k > 0



S
T
k HSk = S

T
k Yk

For a quadratic function,

L(w) = 1

2
w

T
Hw + g

T
w

r2L(w) = H

We have

Therefore H satisfies the Secant Equations

Erway et al. (2018). “Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations,” ArXiv e-prints.

Initialization Methods II,III



Initialization Methods II,III
Consider the compact representation of L-BFGS

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.

Bk � �kI =  kMk 
T
k

We should bound       in order to avoid a false curvature 
condition in  kMk 

T
k .

�k

By solving a general Eigenvalue problem

Az = �Bz

�k < �min



Initialization Method II

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.

The general Eigenvalue problem

�k < �min

(Lk +Dk + LT
k )z = �ST

k Skz

ST
k Yk = Lk +Dk + Uk

LDU decomposition

Choose a positive value less than the smallest eigenvalue 

B0 = �kI, �k > 0



Initialization Method III

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.

The general Eigenvalue problem considering nonlinearity

�k < �min

Choose a positive value less than the smallest eigenvalue 

A⇤z = �B⇤z

Bk = �kI + kMk 
T
k

 k =
⇥
�kSk Yk

⇤
, Mk =


��kST

k Sk �Lk

�LT
k Dk

��1

A⇤ = Lk+Dk+LT
k � ST

k YkD̃Y T
k Sk� �2

k�1(S
T
k SkÃS

T
k Sk),

B⇤ = ST
k Sk + ST

k SkB̃Y T
k ST

k + ST
k YkB̃

TST
k Sk.



Experiment on MNIST

Input conv1 conv2pool1 pool2 hidden4 output

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.



Training/Test Loss

Full Stochastic Full Stochastic

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.



Training/Test Accuracy

Full Stochastic Full Stochastic

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.



Training Time

Full Stochastic Full Stochastic

Jacob Rafati, and Roummel F. Marcia (2018). Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning. (ICMLA 2018), Orlando, Florida.



Conclusions
• We proposed and demonstrated an optimization method based 

on the limited memory quasi-Newton method known as L-BFGS 
as an alternative to the gradient descent methods typically used 
to train deep neural networks. 


• We considered both line-search and trust-region frameworks. 
Trust-region is much faster than line-search since it doesn’t 
require satisfying the sufficient decrease and curvature conditions. 


• Trust-region radius can shrink or expand and is more flexible in 
choosing alternative search direction since when the secant 
condition doesn’t satisfy. 


• We investigated three methods for initializing L-BFGS matrices in 
a trust-region optimization framework in order to avoid false 
curvature conditions. The proposed methods require solving a 
cheap general eigenvalue problems and offer upper bounds for 
initial values. 



Future Work
• The true Hessian is indefinite, and using 

indefinite quasi-Newton matrices, like 
Symmetric Rank 1 (SR1), or Full Broyden 
Class (FBC) within trust-region methods 
might lead to better convergence properties. 
We will study these methods in a future work.


• We will examine these optimization methods 
on larger deep learning problems, such as 
image recognition, healthcare, etc.



Publications
• Jacob Rafati, Omar DeGuchy and Roummel F. Marcia 

(2018). Trust-Region Minimization Algorithm for Training 
Responses (TRMinATR): The Rise of Machine Learning 
Techniques. In 26th European Signal Processing 
Conference, Rome, Italy.


• Jacob Rafati, and Roummel F. Marcia (2018). Improving L-
BFGS Initialization For Trust-Region Methods In Deep 
Learning. In 17th IEEE International Conference on 
Machine Learning and Applications (ICMLA 2018), 
Orlando, Florida.



Problem 4. 
Quasi-Newton Optimization in  

Deep RL



State Function 
Approximator

state-action 
Values

...

...

Generalization

ws q(s, a, w)

q(s, ai, w)



Agent

Environment

state
reward

action
s

r

s0

a

 Empirical Risk Minimization in Deep RL

Sutton and Barto (2017). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 2nd edition.

min
w2R

L(w) , 1

N

X

e2D

�
r + �max

a0
q(s0, a0;w)� q(s, a;w)

�2

D = {(s, a, s0, r)} is Agent’s Experiences Memory.



Computing gradients
OkOk�1

Ok Ok+1

Ok = D

yk = rf(wk+1)
(Ok) +rf(wk)

(Ok)

gk =
1

2

�
rL(wk)

(Ok�1) +rL(wk)
(Ok)

�

To efficiently compute gradient and gradient differences, 

we can reuse the previous iteration’s gradient



Line Search Method
pk

wk
wk+1

↵kpk

J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

Hk+1 =
⇣
I � yks

T
k

y
T
k sk

⌘
Hk

⇣
I � sky

T
k

yks
T
k

⌘
+

yky
T
k

yks
T
k

Hk = B
�1
kThere is a formula to update inverse of BFGS matrices, 

pk = B�1
k rL(wk)

Search step, the minimizer of quadratic model

Wolfe conditions

L(wk + ↵kpk)  L(wk) + c1↵krL(wk)
T pk

rL(wk + ↵kpk)
T pk � c2rf(wk)

T pk

Instead we satisfy the sufficient decrease and curvature conditions known as



L-BFGS Two-Loop Recursion

Computational time is 4mn.



Convergence Analysis

If we bound the step size,               we can compute an upper-bound 
for loss

Jacob Rafati, and Roummel F. Marcia (2019). Quasi-Newton Optimization in Deep Q-Learning for Playing ATARI Games. arXiv e-print (arXiv:1811.02693).

↵ <
1

2��0 ,

Theorem. Under these assumptions:

i.e. the loss function will converge to a neighborhood of the optimal loss.



Value Optimality

By applying another condition on step size, 

the value function theoretically converges to optimal values.

Jacob Rafati, and Roummel F. Marcia (2019). Quasi-Newton Optimization in Deep Q-Learning for Playing ATARI Games. arXiv e-print (arXiv:1811.02693).

Theorem.



Experiments - ATARI 2600
Beam Rider Breakout Enduro

Qbert Seaquest Space Invadors

We used one NVIDIA Tesla K40 GPU with 12GB GDDR5 RAM on MERCED clusters. 
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Jacob Rafati, and Roummel F. Marcia (2019). Deep Reinforcement Learning via L-BFGS Optimization. arXiv e-print (arXiv:1811.02693).
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Train Loss
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Jacob Rafati, and Roummel F. Marcia (2019). Deep Reinforcement Learning via L-BFGS Optimization. arXiv e-print (arXiv:1811.02693).
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Training Time for different batch 
and different L-BFGS memory
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Jacob Rafati, and Roummel F. Marcia (2019). Deep Reinforcement Learning via L-BFGS Optimization. arXiv e-print (arXiv:1811.02693).

CV ⇡ 50%Coe�cient of Variation =
std

mean



Training Time — L-BFGS vs SGD

Jacob Rafati, and Roummel F. Marcia (2019). Deep Reinforcement Learning via L-BFGS Optimization. arXiv e-print (arXiv:1811.02693).

Computation time of our algorithm

Computation time of SGD algorithm
⇡ 0.63

Cost of Algorithm

Cost of DQN
=

(L/b)(zbn+ 4mn)

(Ls/f)(bsn)
=

L

Ls

�fz
bs

+
4fm

bbs

�
.

For same number of Q-learning steps,
L

Ls
= 1
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Best Scores

Bellemare et al. (2012). Investigating contingency awareness using ATARI 2600 games. AAAI.

Bellemare et al. (2013). The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279.

Hausknecht et al. (2014). A neuroevolution approach to general ATARI game playing. IEEE Transactions on Computational Intelligence and AI in Games, 6(4):355–366.

Schulman et al. (2015). Trust region policy optimization. ICML.

Mnih, et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540):529–533.

Jacob Rafati, and Roummel F. Marcia (2019). Deep Reinforcement Learning via L-BFGS Optimization. arXiv e-print (arXiv:1811.02693)



Conclusions
• We proposed and implemented a novel optimization 

method based on line search limited-memory BFGS for 
deep reinforcement learning framework. 


• Due to the nonconvex and nonlinear loss function in deep 
reinforcement learning, our numerical experiments show 
that using the curvature information in computing the 
search direction leads to a more robust convergence. 


• Our proposed deep L-BFGS Q-Learning method is 
designed to be efficient for parallel computations in GPU. 


• Our method is much faster than the existing methods in 
the literature, and it is memory efficient since it does not 
need to store a large experience replay memory.



Future Work

• We will consider the optimization methods 
based on trust-region methods.


• We will study methods based on indefinite 
quasi-Newton, like SR1 and Full Broyden 
Class.


• We will study the Hessian-free optimization 
methods for model-free RL within conjugate 
gradient framework.



Publications
• Jacob Rafati, and Roummel F. Marcia (2019). Deep 

Reinforcement Learning via L-BFGS Optimization. arXiv e-
print (arXiv:1811.02693).



Concluding Remarks



Main Contributions
• In my Ph.D. dissertation, I have investigated biologically inspired 

techniques for learning useful representations for model-free 
reinforcement learning, as well as numerical optimization methods 
for improving learning.


• Learning Sparse Representations in RL: I have implemented 
efficient algorithms that incorporate a kind of lateral inhibition into 
artificial neural network layers, driving these machine learning 
systems to produce sparse conjunctive internal representations.


• Learning Representations in Model-Free HRL: I have 
implemented a novel model-free method for subgoal discovery 
using incremental unsupervised learning over a small memory of 
the most recent experiences of the agent. When combined with 
an intrinsic motivation learning mechanism, and temporal 
abstraction, this method learns subgoals and skills together, 
based on experiences in the environment. 



Main Contributions
• Optimization Methods in Deep RL: I have contributed to the 

design of an efficient optimization method, based on the L-BFGS 
quasi-Newton method within line search strategy, offering it as an 
alternative to SGD methods. 


• Quasi-Newton Optimization in Deep Learning: I have 
implemented efficient algorithms based on L-BFGS optimization 
method suitable for general deep learning applications to improve 
the quality of representation learning, as well as convergence 
properties. I have implemented L-BFGS optimization under both 
rust-region and  line-search frameworks, and I have produced 
evidence that this approach is efficient for deep learning problems 
such as classification and regression from  big data.


• Improving L-BFGS Initialization for trust-region methods: I 
have explored various initialization methods for the L-BFGS 
matrices, within a trust-region framework.



Future Work
• Learning Representations in Model-Based RL: In model-based approach, 

the agent can incorporate planning into learning process by learning a model 
of the environment. I will study methods for learning representations of the 
agent's state within model-based reinforcement learning framework. 


• Model selection in RL: I will study different families of function approximators 
for the value function, and investigate their effects on learning representations 
of the agent's state.


• Formal Convergence and Optimality Analysis: Proofs on effectiveness of 
the proposed methods in this dissertation (as well as majority of the deep 
learning and the deep RL literature) rely on empirical results on some 
numerical simulations, which are very time consuming. I will attempt to study 
formal convergence analysis in order to compute upper-bounds, and lower-
bounds of each proposed method in order to analyze the limits and power of 
each method.


• Real world applications: I will investigate the effectiveness of the proposed 
methods on real-world applications such as robotics, autonomous driving, etc.  
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