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Reinforcement Learning

Reinforcement learning (RL) is learning how to map situations 
(states) to agent’s decisions (actions) to maximize future 
rewards (return) by interaction with an unknown environment. 

Experience (s, a, r, s’) as Data.

Sutton and Barto (2017). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 2nd edition.

!2



State
Parameterized 

Function 
Approximator

Value Function 
Expectation of Return 

(Game Scores)

...

...

Generalization

ws q(s, ai;w)

!3



Success in easy tasks, Failure in more complex task

Mnih, et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540):529–533.
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Learning Representations in model-free HRL

• Temporal Abstraction 
Learning to operate over different levels of temporal abstraction. 
Learning a meta-policy to choose a proper subgoal.


• Intrinsic Motivation Learning 
Efficiently exploring the state-space while learning reusable subpolicies 
(skills) through the intrinsic motivation learning. The intrinsic critic 
sends intrinsic rewards based on attaining subgoals.


• Automatic Subgoal Discovery 
Automatic Subgoal Discovery in large-scale tasks with sparse delayed 
feedback within model-free HRL framework.


• Learning hierarchical representation of model-free HRL in a 
unified approach 

Integration of temporal abstraction, intrinsic motivation learning and 
subgoal discovery in one unified algorithm.
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Kulkarni et al. (2016). Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. NeurIPS.

Meta-controller/Controller Framework 
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Unsupervised Subgoal Discovery
Properties: 

• It is close to a rewarding state.


• It represents a set of states, at least some of which tend 
to be along a state transition path to a rewarding state.


Hypothesis: We can use unsupervised learning methods 
to find useful subgoals based on a memory of the agent’s 
experiences (rewards and visited states). 


Centroids of K-means clusters (e.g. rooms)

Outliers as potential subgoals (e.g. key, box)

Boundary of two clusters (e.g. doorway)
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K-Means Clustering 

K = 4 K = 6 K = 8

Anomaly Detection

Unsupervised Subgoal Discovery
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Results — 4-Rooms task
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Regular RL
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Montezuma’s Revenge
Random Walk Our Method
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s Unified Model-Free HRL Method

DeepMind DQN Algorithm (Mnih et. al., 2015)
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Neural Correlates of  
Unsupervised Subgoal Discovery

Strange et al. (2014). Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience, 15(10):655–669. 

Chalmers et al. (2016). Computational properties of the hippocampus increase the efficiency of goal-directed foraging through hierarchical 
reinforcement learning. Frontiers in Computational Neuroscience, 10.

Botvinick et al. (2009). Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition, 113(3).

Botvinick, M. and Weinstein, A. (2014). Model-based hierarchical reinforcement learning and human action control. Philosophical Transactions of 
the Royal Society B: Biological Sciences, 369.

• Temporal abstraction in HRL might map onto regions within the dorsolateral and orbital prefrontal 
cortex (PFC).


• More recent discoveries reveal a potential role for medial temporal lobe structures, including the 
hippocampus, in planning and spatial navigation, utilizing a hierarchical representation of space.


• There are evidences that hippocampus serve in model-based and model-free HRL with both 
flexibility and computational efficiency.


• Place cells in the dorsal hippocampus represent small regions while those in the ventral 
hippocampus represent larger regions.
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Conclusions
• We proposed and demonstrated a novel model-free method 

for subgoal discovery using unsupervised learning over a 
small memory of experiences (trajectories) of the agent. 


• When combined with an intrinsic motivation learning 
mechanism, this method learns subgoals and skills 
together, based on experiences in the environment. 


• Intrinsic motivation learning provides efficient exploration 
scheme in tasks with sparse rewards that leads to 
successful subgoal discovery.  


• We offered a unified approach for learning hierarchical 
representations in a model-free HRL framework. This 
method is scalable to larger scale problems.
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Questions and Feedbacks

For paper, code, slides:

http://rafati.net 

Email:

yrafati@gmail.com
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